Is there a way to to find all the sub-sentences of a sentence that still are meaningful and contain at least one subject, verb, and a predicate/object?
For example, if we have a sentence like "I am going to do a seminar on NLP at SXSW in Austin next month". We can extract the following meaningful sub-sentences from this sentence: "I am going to do a seminar", "I am going to do a seminar on NLP", "I am going to do a seminar on NLP at SXSW", "I am going to do a seminar at SXSW", "I am going to do a seminar in Austin", "I am going to do a seminar on NLP next month", etc.
Please note that there is no deduced sentences here (e.g. "There will be a NLP seminar at SXSW next month". Although this is true, we don't need this as part of this problem.) . All generated sentences are strictly part of the given sentence.
How can we approach solving this problem? I was thinking of creating annotated training data that has a set of legal sub-sentences for each sentence in the training data set. And then write some supervised learning algorithm(s) to generate a model.
I am quite new to NLP and Machine Learning, so it would be great if you guys could suggest some ways to solve this problem.
There's a paper titled "Using Discourse Commitments to Recognize Textual Entailment" by Hickl et al that discusses the extraction of discourse commitments (sub-sentences). The paper includes a description of their algorithm which in some level operates on rules. They used it for RTE, and there may be some minimal levels of deduction in the output. Text simplification maybe a related area to look at.