Search code examples
rclojureincantercolt

Modified Bessel functions of order (n)


I'm using Incanter and Parallel Colt for a project, and need to have a function that returns the modified Bessel function of an order n for a value v.

The Colt library has two methods for order 0 and order 1, but beyond that, only a method that return the Bessel function of order n for a value v (cern.jet.math.tdouble.Bessel/jn).

I'm trying to build the R function, dskellam(x,lambda1, lambda2) for the Skellam distribution, in Clojure/Java

Is there something I can do with the return value of the Bessel method to convert it to a modified Bessel?


Solution

  • No, the difference isn't a simple transformation, as these links make clear:

    http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html

    http://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html

    I'd have a look at "Numerical Recipes" or Abramowitz & Stegun. It wouldn't be hard to implement your own in a short period of time.

    Here's a Java implementation of the modified Bessel functions:

    package math;
    
    /**
     * Functions that are not part of standard libraries
     * User: Michael
     * Date: 1/9/12
     * Time: 9:22 PM
     */
    public class Functions {
    
        public static final double ACC = 4.0; 
        public static final double BIGNO = 1.0e10;
        public static final double BIGNI = 1.0e-10;
    
        public static void main(String[] args) {
            double xmin = ((args.length > 0) ? Double.valueOf(args[0]) : 0.0);
            double xmax = ((args.length > 1) ? Double.valueOf(args[1]) : 4.0);
            double dx = ((args.length > 2) ? Double.valueOf(args[2]) : 0.1);
            System.out.printf("%10s %10s %10s %10s\n", "x", "bessi0(x)", "bessi1(x)", "bessi2(x)");
            for (double x = xmin; x < xmax; x += dx) {
                System.out.printf("%10.6f %10.6f %10.6f %10.6f\n", x, bessi0(x), bessi1(x), bessi(2, x));
            }
        }
    
        public static final double bessi0(double x) {
            double answer;
            double ax = Math.abs(x);
            if (ax < 3.75) { // polynomial fit
                double y = x / 3.75;
                y *= y;
                answer = 1.0 + y * (3.5156229 + y * (3.0899424 + y * (1.2067492 + y * (0.2659732 + y * (0.360768e-1 + y * 0.45813e-2)))));
            } else {
                double y = 3.75 / ax;
                answer = 0.39894228 + y * (0.1328592e-1 + y * (0.225319e-2 + y * (-0.157565e-2 + y * (0.916281e-2 + y * (-0.2057706e-1 + y * (0.2635537e-1 + y * (-0.1647633e-1 + y * 0.392377e-2)))))));
                answer *= (Math.exp(ax) / Math.sqrt(ax));
            }
            return answer;
        }
    
        public static final double bessi1(double x) {
            double answer;
            double ax = Math.abs(x);
            if (ax < 3.75) { // polynomial fit
                double y = x / 3.75;
                y *= y;
                answer = ax * (0.5 + y * (0.87890594 + y * (0.51498869 + y * (0.15084934 + y * (0.2658733e-1 + y * (0.301532e-2 + y * 0.32411e-3))))));
            } else {
                double y = 3.75 / ax;
                answer = 0.2282967e-1 + y * (-0.2895312e-1 + y * (0.1787654e-1 - y * 0.420059e-2));
                answer = 0.39894228 + y * (-0.3988024e-1 + y * (-0.362018e-2 + y * (0.163801e-2 + y * (-0.1031555e-1 + y * answer))));
                answer *= (Math.exp(ax) / Math.sqrt(ax));
            }
            return answer;
        }
    
        public static final double bessi(int n, double x) {
            if (n < 2)
                throw new IllegalArgumentException("Function order must be greater than 1");
            if (x == 0.0) {
                return 0.0;
            } else {
                double tox = 2.0/Math.abs(x);
                double ans = 0.0;
                double bip = 0.0;
                double bi  = 1.0;
                for (int j = 2*(n + (int)Math.sqrt(ACC*n)); j > 0; --j) {
                    double bim = bip + j*tox*bi;
                    bip = bi;
                    bi = bim;
                    if (Math.abs(bi) > BIGNO) {
                        ans *= BIGNI;
                        bi *= BIGNI;
                        bip *= BIGNI;
                    }
                    if (j == n) {
                        ans = bip;
                    }
                }
                ans *= bessi0(x)/bi;
                return (((x < 0.0) && ((n % 2) == 0)) ? -ans : ans);
            }
        }
    }