I've searched all over the net, but I could not find a solution to my problem. I simply want a function that rounds double values like MS Excel does. Here is my code:
#include <iostream>
#include "math.h"
using namespace std;
double Round(double value, int precision) {
return floor(((value * pow(10.0, precision)) + 0.5)) / pow(10.0, precision);
}
int main(int argc, char *argv[]) {
/* The way MS Excel does it:
1.27815 1.27840 -> 1.27828
1.27813 1.27840 -> 1.27827
1.27819 1.27843 -> 1.27831
1.27999 1.28024 -> 1.28012
1.27839 1.27866 -> 1.27853
*/
cout << Round((1.27815 + 1.27840)/2, 5) << "\n"; // *
cout << Round((1.27813 + 1.27840)/2, 5) << "\n";
cout << Round((1.27819 + 1.27843)/2, 5) << "\n";
cout << Round((1.27999 + 1.28024)/2, 5) << "\n"; // *
cout << Round((1.27839 + 1.27866)/2, 5) << "\n"; // *
if(Round((1.27815 + 1.27840)/2, 5) == 1.27828) {
cout << "Hurray...\n";
}
system("PAUSE");
return EXIT_SUCCESS;
}
I have found the function here at stackoverflow, the answer states that it works like the built-in excel rounding routine, but it does not. Could you tell me what I'm missing?
In a sense what you are asking for is not possible:
Floating point values on most common platforms do not have a notion of a "number of decimal places". Numbers like 2.3 or 8.71 simply cannot be represented precisely. Therefore, it makes no sense to ask for any function that will return a floating point value with a given number of non-zero decimal places -- such numbers simply do not exist.
The only thing you can do with floating point types is to compute the nearest representable approximation, and then print the result with the desired precision, which will give you the textual form of the number that you desire. To compute the representation, you can do this:
double round(double x, int n)
{
int e;
double d;
std::frexp(x, &e);
if (e >= 0) return x; // number is an integer, nothing to do
double const f = std::pow(10.0, n);
std::modf(x * f, &d); // d == integral part of 10^n * x
return d / f;
}
(You can also use modf
instead of frexp
to determine whether x
is already an integer. You should also check that n
is non-negative, or otherwise define semantics for negative "precision".)
Alternatively to using floating point types, you could perform fixed point arithmetic. That is, you store everything as integers, but you treat them as units of, say, 1/1000. Then you could print such a number as follows:
std::cout << n / 1000 << "." << n % 1000;
Addition works as expected, though you have to write your own multiplication function.