I have a circle, say radius of 10, and I can find the outer bounding rect easy enough since its width and height is equal to the radius, but what I need is the inner bounding rect. Does anyone know how to calculate the difference in size from the outer and inner bounding rectangles of a circle?
Here's an image to illustrate what I'm talking about. The red rectangle is the outer bounding box of the circle, which I know. The yellow rectangle is the inner bounding rectangle of the circle, which I need to find the difference in size from the outer rectangle.
My first guess to find the difference is to find one of the four points of the inner rectangle by finding that point along the circumference of the circle, each point being at a 45 degree offsets, and then just find the different from that point and the related point in the larger rect.
EDIT: Based off of the solution given by Steve B. I've come up with the algorithm to get what I want which is the following:
r*2 - sqrt(2)*r
If the radius is r
, the outer rectangle size will be r*2
.
The inner rectangle will have size equals to 2*sqrt(2*r)
.
So the diff will be equals to 2*(r-sqrt(2*r^2))
.