I would like to perform blinear interpolation using python.
Example gps point for which I want to interpolate height is:
B = 54.4786674627
L = 17.0470721369
using four adjacent points with known coordinates and height values:
n = [(54.5, 17.041667, 31.993), (54.5, 17.083333, 31.911), (54.458333, 17.041667, 31.945), (54.458333, 17.083333, 31.866)]
z01 z11
z
z00 z10
import math
z00 = n[0][2]
z01 = n[1][2]
z10 = n[2][2]
z11 = n[3][2]
c = 0.016667 #grid spacing
x0 = 56 #latitude of origin of grid
y0 = 13 #longitude of origin of grid
i = math.floor((L-y0)/c)
j = math.floor((B-x0)/c)
t = (B - x0)/c - j
z0 = (1-t)*z00 + t*z10
z1 = (1-t)*z01 + t*z11
s = (L-y0)/c - i
z = (1-s)*z0 + s*z1
z01 z0 z11
z
z00 z1 z10
2022 Edit:
I would like to thank everyone who, even more than a decade after publication of this question, gives new answers to it.
Here's a reusable function you can use. It includes doctests and data validation:
def bilinear_interpolation(x, y, points):
'''Interpolate (x,y) from values associated with four points.
The four points are a list of four triplets: (x, y, value).
The four points can be in any order. They should form a rectangle.
>>> bilinear_interpolation(12, 5.5,
... [(10, 4, 100),
... (20, 4, 200),
... (10, 6, 150),
... (20, 6, 300)])
165.0
'''
# See formula at: http://en.wikipedia.org/wiki/Bilinear_interpolation
points = sorted(points) # order points by x, then by y
(x1, y1, q11), (_x1, y2, q12), (x2, _y1, q21), (_x2, _y2, q22) = points
if x1 != _x1 or x2 != _x2 or y1 != _y1 or y2 != _y2:
raise ValueError('points do not form a rectangle')
if not x1 <= x <= x2 or not y1 <= y <= y2:
raise ValueError('(x, y) not within the rectangle')
return (q11 * (x2 - x) * (y2 - y) +
q21 * (x - x1) * (y2 - y) +
q12 * (x2 - x) * (y - y1) +
q22 * (x - x1) * (y - y1)
) / ((x2 - x1) * (y2 - y1) + 0.0)
You can run test code by adding:
if __name__ == '__main__':
import doctest
doctest.testmod()
Running the interpolation on your dataset produces:
>>> n = [(54.5, 17.041667, 31.993),
(54.5, 17.083333, 31.911),
(54.458333, 17.041667, 31.945),
(54.458333, 17.083333, 31.866),
]
>>> bilinear_interpolation(54.4786674627, 17.0470721369, n)
31.95798688313631