Let
A(t)=(f1(t), f2(t); f3(t), f4(t)) be a 2*2 matrix
first of all how can I define the matrix A(t)
as a function of t
then
I would like to define the determinant of A as a function, i.e.
d(t)=Det(A(t))
and then plot d(t)
.
Actually I want to write this function for n*n matrix where n>=2
thanks
For example:
a[t_] := Table[Sin[(n + m) t], {n, 2}, {m, 2}]
d[t_] := Det[a[t]]
Plot[d[t], {t, 0, 2 Pi}]
If you don't have an explicit expression:
a[t_]:= {{f1[t],f2[t]},{f3[t],f4[t]}}
also works
Edit
Using the dimension as a parameter:
a[t_, n_] := Table[1/(j + k) t, {j, n}, {k, n}]
d[t_, n_] := Det[a[t, n]]
Plot[d[t, 5], {t, 0, 2 Pi}]
Edit
Plotting several dimensions in the same plot:
a[t_, n_] := Table[k^4/(j + k) t, {j, n}, {k, n}]
d[t_, n_] := Det[a[t, n]]
Plot[Evaluate@Table[d[t, n], {n, 2, 5}], {t, 0, 20}]