I am looking to see how a function that computes the Hessian of a log-likelihood can be compiled, so that it can be efficiently used with different sets of parameters.
Here is an example.
Suppose we have a function that computes the log-likelihood of a logit model, where y is vector and x is a matrix. beta is a vector of parameters.
pLike[y_, x_, beta_] :=
Module[
{xbeta, logDen},
xbeta = x.beta;
logDen = Log[1.0 + Exp[xbeta]];
Total[y*xbeta - logDen]
]
Given the following data, we can use it as follows
In[1]:= beta = {0.5, -1.0, 1.0};
In[2]:= xmat =
Table[Flatten[{1,
RandomVariate[NormalDistribution[0.0, 1.0], {2}]}], {500}];
In[3]:= xbeta = xmat.beta;
In[4]:= prob = Exp[xbeta]/(1.0 + Exp[xbeta]);
In[5]:= y = Map[RandomVariate[BernoulliDistribution[#]] &, prob] ;
In[6]:= Tally[y]
Out[6]= {{1, 313}, {0, 187}}
In[9]:= pLike[y, xmat, beta]
Out[9]= -272.721
We can write its hessian as follows
hessian[y_, x_, z_] :=
Module[{},
D[pLike[y, x, z], {z, 2}]
]
In[10]:= z = {z1, z2, z3}
Out[10]= {z1, z2, z3}
In[11]:= AbsoluteTiming[hess = hessian[y, xmat, z];]
Out[11]= {0.1248040, Null}
In[12]:= AbsoluteTiming[
Table[hess /. {z1 -> 0.0, z2 -> -0.5, z3 -> 0.8}, {100}];]
Out[12]= {14.3524600, Null}
For efficiency reasons, I can compile the original likelihood function as follows
pLikeC = Compile[{{y, _Real, 1}, {x, _Real, 2}, {beta, _Real, 1}},
Module[
{xbeta, logDen},
xbeta = x.beta;
logDen = Log[1.0 + Exp[xbeta]];
Total[y*xbeta - logDen]
],
CompilationTarget -> "C", Parallelization -> True,
RuntimeAttributes -> {Listable}
];
which yields the same answer as pLike
In[10]:= pLikeC[y, xmat, beta]
Out[10]= -272.721
I am looking for an easy way to obtain similarly, a compiled version of the hessian function, given my interest in evaluating it many times.
Here is an idea based on the previous post(s): We construct the input to Compile symbolically.
mkCHessian[{y_, ys_Integer}, {x_, xs_Integer}, {beta_, bs_Integer}] :=
With[{
args = MapThread[{#1, _Real, #2} &, {{y, x, beta}, {1, 2, 1}}],
yi = Quiet[Part[y, #] & /@ Range[ys]],
xi = Quiet[Table[Part[x, i, j], {i, xs}, {j, xs}]],
betai = Quiet[Part[beta, #] & /@ Range[bs]]
},
Print[args];
Print[yi];
Print[xi];
Print[betai];
Compile[Evaluate[args],
Evaluate[D[pLike[yi, xi, betai], {betai, 2}]]]
]
And then generate the compiled function.
cf = mkCHessian[{y, 3}, {x, 3}, {beta, 3}];
You then call that compiled function
cf[y, xmat, beta]
Please verify that I did not make a mistake; in de Vries's post y is of length 2. Mine is length 3. I am sure what is correct. And of course, the Print are for illustration...
Update
A version with slightly improved dimension handling and with variables localized:
ClearAll[mkCHessian];
mkCHessian[ys_Integer, bs_Integer] :=
Module[
{beta, x, y, args, xi, yi, betai},
args = MapThread[{#1, _Real, #2} &, {{y, x, beta}, {1, 2, 1}}];
yi = Quiet[Part[y, #] & /@ Range[ys]];
xi = Quiet[Table[Part[x, i, j], {i, ys}, {j, bs}]];
betai = Quiet[Part[beta, #] & /@ Range[bs]];
Compile[Evaluate[args], Evaluate[D[pLike[yi, xi, betai], {betai, 2}]]]
]
Now, with asim's definitions in In[1] to In[5]:
cf = mkCHessian[500, 3];
cf[y, xmat, beta]
(* ==> {{-8.852446923, -1.003365612, 1.66653381},
{-1.003365612, -5.799363241, -1.277665283},
{1.66653381, -1.277665283, -7.676551252}} *)
Since y is a random vector results will vary.