I have to solve the following optimization problem: Given a set of elements (E1,E2,E3,E4,E5,E6) create an arbitrary set of sequences e.g.
seq1:E1,E4,E3
seq2:E2
seq3:E6,E5
and given a function f that gives a value for every pair of elements e.g.
f(E1,E4) = 5
f(E4,E3) = 2
f(E6,E5) = 3
...
in addition it also gives a value for the pair of an element combined with some special element T, e.g.
f(T,E2) = 10
f(E2,T) = 3
f(E5,T) = 1
f(T,E6) = 2
f(T,E1) = 4
f(E3,T) = 2
...
The utility function that must be optimized is the following: The utility of a sequence set is the sum of the utility of all sequences. The utility of a sequence A1,A2,A3,...,AN is equal to f(T,A1)+f(A1,A2)+f(A2,A3)+...+f(AN,T) for our example set of sequences above this leads to
seq1: f(T,E1)+f(E1,E4)+f(E4,E3)+f(E3,T) = 4+5+2+2=13
seq2: f(T,E2)+f(E2,T) =10+3=13
seq3: f(T,E6)+f(E6,E5)+f(E5,T) =2+3+1=6
Utility(set) = 13+13+6=32
I try to solve a larger version (more elements than 6, rather 1000) of this problem using A* and some heuristic. Starting from zero sequences and stepwise adding elements either to existing sequences or as a new sequence, until we obtain a set of sequences containing all elements. The problem I run into is the fact that while generating possible solutions I end up with duplicates, for example in above example all the following combinations are generated:
seq1:E1,E4,E3
seq2:E2
seq3:E6,E5
+
seq1:E1,E4,E3
seq2:E6,E5
seq3:E2
+
seq1:E2
seq2:E1,E4,E3
seq3:E6,E5
+
seq1:E2
seq2:E6,E5
seq3:E1,E4,E3
+
seq1:E6,E5
seq2:E2
seq3:E1,E4,E3
+
seq1:E6,E5
seq2:E1,E4,E3
seq3:E2
which all have equal utility, since the order of the sequences does not matter. These are all permutations of the 3 sequences, since the number of sequences is arbitrairy there can be as much sequences as elements and a faculty(!) amount of duplicates generated... One way to solve such a problem is keeping already visited states and don't revisit them. However since storing all visited states requires a huge amount of memory and the fact that comparing two states can be a quite expensive operation, I was wondering whether there wasn't a way I could avoid generating these in the first place.
THE QUESTION: Is there a way to stepwise construct all these sequence constraining the adding of elements in a way that only combinations of sequences are generated rather than all variations of sequences.(or limit the number of duplicates)
As an example, I only found a way to limit the amount of 'duplicates' generated by stating that an element Ei should always be in a seqj with j<=i, therefore if you had two elements E1,E2 only
seq1:E1
seq2:E2
would be generated, and not
seq1:E2
seq2:E1
I was wondering whether there was any such constraint that would prevent duplicates from being generated at all, without failing to generate all combinations of sets.
Well, it is simple. Allow generation of only such sequences that are sorted according to first member, that is, from the above example, only
seq1:E1,E4,E3
seq2:E2
seq3:E6,E5
would be correct. And this you can guard very easily: never allow additional sequence that has its first member less than the first member of its predecessor.