...either spline- (best) or linear-interpolated (OK) or just repeated values (fine) throughout the quarter. The issue is that I do not know how to convert the data type returned by getFin()
and viewFin()
into something timeSeries
-type usable. Here is my code:
getFin('F')
x <- viewFin(F.f, "BS", period="Q")["Total Common Shares Outstanding",]*1000
My desired output is
> x
GMT x.ts
2011-09-01 3816000
2011-08-01 3816000
2011-07-01 3816000
2011-06-01 3815000
2011-05-01 3815000
2011-04-01 3815000
2011-03-01 3813000
2011-02-01 3813000
2011-01-01 3813000
2010-12-01 3778000
2010-11-01 3778000
2010-10-01 3778000
2010-09-01 3484000
However, here is some actual output:
> x
2011-09-30 2011-06-30 2011-03-31 2010-12-31 2010-09-30
3816000 3815000 3813000 3778000 3484000
> str(x)
Named num [1:5] 3816000 3815000 3813000 3778000 3484000
- attr(*, "names")= chr [1:5] "2011-09-30" "2011-06-30" "2011-03-31" "2010-12-31" ...
It looks like the x object is in some strange reverse format, where the key is the numeric value, and the value is a character string of the date. When I try to extract dates, or the numeric component, I cannot isolate the numeric portion to generate a time series object.
Ideally, to get to my desired output, I would be able to say
mydates <- timeSequence(from = "2011-01-01", to=Sys.Date(), by = "month")
series <- timeSeries(x$data, mydates)
But I can't seem to extract the numeric data portion.
UPDATE
From here and here, I adapted the following code:
getFin('F')
x <- viewFin(F.f, "BS", period="Q")["Total Common Shares Outstanding",]*1000
zoox = zoo(x, order.by=as.Date(names(x)))
x2 <- na.spline(merge(zoox, foo=zoo(NA, order.by=seq(start(zoox), end(zoox), "month")))[, 1])
However, my output mangles the dates a bit and messes up the interpolation:
>x2
2010-09-30 2010-10-30 2010-11-30 2010-12-30 2010-12-31 2011-01-30 2011-03-02
3484000 3623591 3720509 3776671 3778000 3804738 3813071
2011-03-30 2011-03-31 2011-04-30 2011-05-30 2011-06-30 2011-07-30 2011-08-30
3813025 3813000 3813100 3814116 3815000 3814976 3814884
2011-09-30
3816000
As you can see, I have both 12-30 and 12-31, 3 values for March-2011, but no February, etc. How to solve this?
UPDATE 2:
Please post a better answer! This is really ugly, but here's how I got something acceptable:
getFin('F')
x <- viewFin(F.f, "BS", period="Q")["Total Common Shares Outstanding",]*1000
zoox = zoo(x, order.by=as.Date(names(x)))
foo=zoo(NA, order.by=seq(as.Date(as.character(timeFirstDayInMonth(start(zoox)))), as.Date(as.character(timeFirstDayInMonth(end(zoox)))), "month"))
foo2 <- na.approx(merge(zoox, foo)[, 1])
fx <- merge(foo2,foo, all=FALSE)[,1]
Which converts
> x
2011-09-30 2011-06-30 2011-03-31 2010-12-31 2010-09-30
3816000 3815000 3813000 3778000 3484000
into
> fx
2010-10-01 2010-11-01 2010-12-01 2011-01-01 2011-02-01 2011-03-01 2011-04-01
3487196 3586261 3682130 3778389 3790444 3801333 3813022
2011-05-01 2011-06-01 2011-07-01 2011-08-01 2011-09-01
3813681 3814363 3815011 3815348 3815685
I find this too ugly to be true, so I post this answer, but want someone else to post a handsomer one.