I want to calculate a Matrix G that its elements is a scalar and are calculated as:
I want to calculated this matrix for a large n > 10000, d>30. My code is below but it has a huge overhead and it still takes very long time.
How can I make this computation at the fastest possible way? Without using GPU and Minimize the memory usage.
import numpy as np
from sklearn.gaussian_process.kernels import Matern
from tqdm import tqdm
from joblib import Parallel, delayed
# Pre-flattened computation to minimize data transfer overhead
def precompute_differences(R, Z):
n, d = R.shape
R_diff_flat = (R[:, None, :] - R[None, :, :]).reshape(n * n, d)
Z_diff = Z[:, None, :] - Z[None, :, :]
return R_diff_flat, Z_diff
def compute_G_row(i, R_diff_flat, Z_diff, W, gamma_val, kernel, n, d):
"""
Compute the i-th row for j >= i and store them in a temporary array.
"""
row_values = np.zeros(n)
for j in range(i, n):
Z_ij = gamma_val * Z_diff[i, j].reshape(1, d)
K_flat = kernel(R_diff_flat, Z_ij)
K_ij = K_flat.reshape(n, n)
row_values[j] = np.sum(W * K_ij)
return i, row_values
def compute_G(M, gamma, R, Z, nu=1.5, length_scale=1.0, use_parallel=True):
"""
Compute the G matrix with fewer kernel evaluations by exploiting symmetry:
G[i,j] = G[j,i]. We only compute for j >= i, then mirror the result.
"""
R = np.asarray(R)
Z = np.asarray(Z)
M = np.asarray(M).reshape(-1, 1) # ensure (n,1)
n, d = R.shape
# Precompute data
R_diff_flat, Z_diff = precompute_differences(R, Z)
W = M @ M.T # Weight matrix
G = np.zeros((n, n))
kernel = Matern(length_scale=length_scale, nu=nu)
if use_parallel and n > 1:
# Parallel computation
results = Parallel(n_jobs=-1)(
delayed(compute_G_row)(i, R_diff_flat, Z_diff, W, gamma, kernel, n, d)
for i in tqdm(range(n), desc="Computing G matrix")
)
else:
# Single-threaded computation
results = []
for i in tqdm(range(n), desc="Computing G matrix"):
row_values = np.zeros(n)
for j in range(i, n):
Z_ij = gamma * Z_diff[i, j].reshape(1, d)
K_flat = kernel(R_diff_flat, Z_ij)
K_ij = K_flat.reshape(n, n)
row_values[j] = np.sum(W * K_ij)
results.append((i, row_values))
# Sort and fill final G by symmetry
results.sort(key=lambda x: x[0])
for i, row_vals in results:
for j in range(i, n):
G[i, j] = row_vals[j]
G[j, i] = row_vals[j] # mirror for symmetry
# Delete auxiliary variables to save memory
del R_diff_flat, Z_diff, W, kernel, results
# Optional checks
is_symmetric = np.allclose(G, G.T, atol=1e-8)
eigenvalues = np.linalg.eigvalsh(G)
is_semi_positive_definite = np.all(eigenvalues >= -1e-8)
print(f"G is semi-positive definite: {is_semi_positive_definite}")
print(f"G is symmetric: {is_symmetric}")
# Delete all local auxiliary variables except G to save memory
local_vars = list(locals().keys())
for var_name in local_vars:
if var_name not in ["G"]:
del locals()[var_name]
return G
Toy Example
# Example usage:
if __name__ == "__main__":
__spec__ = None
n = 20
d = 10
gamma = 0.9
R = np.random.rand(n, d)
Z = np.random.rand(n, d)
M = np.random.rand(n, 1)
G = compute_G(M, gamma, R, Z, nu=1.5, length_scale=1.0, use_parallel=True)
print("G computed with shape:", G.shape)
UPDATE: So it looked that still the answer I wrote was not feasible enough. Leveraging the idea from @Onyymbu, here is the updated code that seems working well with very small memory usage.
import numpy as np
from sklearn.gaussian_process.kernels import Matern
from tqdm import tqdm
from joblib import Parallel, delayed
from scipy.spatial.distance import squareform
def G_Batchwise_optimized(M, gamma, R, Z, nu=1.5, length_scale=1.0, batch_size=100):
"""
Optimized computation of G[i,j] = sum_{l,l'} M[l]*M[l'] * k(r[l] + gamma*z[i], r[l'] + gamma*z[j]).
Reduces memory overhead by computing pairwise differences on the fly.
"""
Z = np.array(Z)
R = np.array(R)
kernel = Matern(length_scale=length_scale, nu=nu)
n = R.shape[0]
mm = M.ravel()
### We Generate unique i, j pairs to avoid redundant calculations ###
a = np.arange(n - 1)
b = np.arange(n - 1, 0, -1)
i = np.repeat(a, b)
j = np.concatenate([np.arange(i, n) for i in a + 1])
m = mm[i] * mm[j] # Weight products
### Compute diagonal elements first (where RD = 0, and where ZD = 0) ###
zero = np.zeros((1, R.shape[1])) # Placeholder for 0-difference
diagR = kernel(gamma * (Z[i] - Z[j]), zero).ravel() # R == 0
diagZ = kernel(zero, R[i] - R[j]) # Z == 0
diagM = mm @ mm # Sum over all M elements
### This is Function to process a batch of kernel evaluations ###
def process_batch(start_idx, end_idx):
"""Computes kernel for a batch of pairwise differences."""
RD_batch = R[i[start_idx:end_idx]] - R[j[start_idx:end_idx]]
ZD_batch = gamma * (Z[i[start_idx:end_idx]] - Z[j[start_idx:end_idx]])
### Compute kernel for both directions ###
kernel_vals = kernel(RD_batch, ZD_batch) + kernel(RD_batch, -ZD_batch)
### Sum weighted kernel values ###
return m[start_idx:end_idx] @ kernel_vals
### Compute off-diagonal elements in batches to reduce memory usage ###
num_pairs = len(i)
num_batches = (num_pairs + batch_size - 1) // batch_size # Ensure full coverage
results = Parallel(n_jobs=-1)(
delayed(process_batch)(start, min(start + batch_size, num_pairs))
for start in tqdm(range(0, num_pairs, batch_size), desc="Computing G matrix")
)
### Construct the G matrix ###
G = squareform(np.concatenate(results) + diagR * diagM)
### Fill diagonal elements ###
G[np.diag_indices_from(G)] = 2 * diagZ @ m + diagM
### Optional validation checks. ###
is_symmetric = np.allclose(G, G.T, atol=1e-8)
eigenvalues = np.linalg.eigvalsh(G)
is_semi_positive_definite = np.all(eigenvalues >= -1e-8)
print(f"G is semi-positive definite: {is_semi_positive_definite}")
print(f"G is symmetric: {is_symmetric}")
return G
and toy example:
#%%
# Example usage:
if __name__ == "__main__":
n = 500 # Large-scale test
d = 10
gamma = 0.9
R = np.random.rand(n, d)
Z = np.random.rand(n, d)
M = np.random.rand(n)
G1_optimized = G_Batchwise_optimized(M, gamma, R, Z, nu=1.5, length_scale=1.0, batch_size=1000)
print(f"G computed with shape: {G1_optimized.shape}, Memory usage: {G1_optimized.nbytes / 1e6:.1f} MB")