I'm calculating EWMA values for array of streamflow, and code is like below:
import polars as pl
import numpy as np
streamflow_data = np.arange(0, 20, 1)
adaptive_alphas = np.concatenate([np.repeat(0.3, 10), np.repeat(0.6, 10)])
streamflow_series = pl.Series(streamflow_data)
ewma_data = np.zeros_like(streamflow_data)
for i in range(1, len(streamflow_series)):
current_alpha = adaptive_alphas[i]
ewma_data[i] = streamflow_series[:i+1].ewm_mean(alpha=current_alpha)[-1]
# When set dtype of ewma_data to float when initial it, output is like this
Output: [0 0.58823529 1.23287671 1.93051717 2.67678771 3.46668163, 4.29488309 5.1560635 6.04512113 6.95735309 9.33379473 10.33353466, 11.33342058 12.33337091 13.33334944 14.33334021 15.33333625 16.33333457, 17.33333386 18.33333355]
# When I don't point dtype of ewma_data and dtype of streamflow_data is int, output will be floored
Output: [0 0 1 1 2 3 4 5 6 6 9 10 11 12 13 14 15 16 17 18]
But when length of streamflow_data
is very big (such as >100000), this code will become very slow.
So how can I extinguish for
in my code and don't influence its result?
Hope for your reply.
If you have only few alpha
values and/or have some condition on which alpha should be used for which row, you could use pl.coalesce()
, pl.when()
and pl.Expr.ewm_mean()
:
df = pl.DataFrame({
"adaptive_alpha": np.concatenate([np.repeat(0.3, 10), np.repeat(0.6, 10)]),
"streamflow": np.arange(0, 20, 1)
})
df.with_columns(
pl.coalesce(
pl.when(pl.col.adaptive_alpha == alpha)
.then(pl.col.streamflow.ewm_mean(alpha = alpha))
for alpha in df["adaptive_alpha"].unique()
).alias("ewma")
).with_columns(ewma_int = pl.col.ewma.cast(pl.Int32))
shape: (20, 4)
┌────────────────┬────────────┬───────────┬──────────┐
│ adaptive_alpha ┆ streamflow ┆ ewma ┆ ewma_int │
│ --- ┆ --- ┆ --- ┆ --- │
│ f64 ┆ i64 ┆ f64 ┆ i32 │
╞════════════════╪════════════╪═══════════╪══════════╡
│ 0.3 ┆ 0 ┆ 0.0 ┆ 0 │
│ 0.3 ┆ 1 ┆ 0.588235 ┆ 0 │
│ 0.3 ┆ 2 ┆ 1.232877 ┆ 1 │
│ 0.3 ┆ 3 ┆ 1.930517 ┆ 1 │
│ 0.3 ┆ 4 ┆ 2.676788 ┆ 2 │
│ … ┆ … ┆ … ┆ … │
│ 0.6 ┆ 15 ┆ 14.33334 ┆ 14 │
│ 0.6 ┆ 16 ┆ 15.333336 ┆ 15 │
│ 0.6 ┆ 17 ┆ 16.333335 ┆ 16 │
│ 0.6 ┆ 18 ┆ 17.333334 ┆ 17 │
│ 0.6 ┆ 19 ┆ 18.333334 ┆ 18 │
└────────────────┴────────────┴───────────┴──────────┘