I evaluate Spark 4 try_variant_get
method handling variant type data. First I make sql statements examples.
CREATE TABLE family (
id INT,
data VARIANT
);
INSERT INTO family (id, data)
VALUES
(1, PARSE_JSON('{"name":"Alice","age":30}')),
(2, PARSE_JSON('[1,2,3,4,5]')),
(3, PARSE_JSON('42'));
When SQL is executed, no errors are brought. Then Below codes are the select command using try_variant_get
method
SELECT
id,
try_variant_get(data, '$.name', 'STRING') AS name,
try_variant_get(data, '$.age', 'INT') AS age
FROM
family
WHERE
try_variant_get(data, '$.name', 'STRING') IS NOT NULL;
SQL output is successfully returned. Then I transform these SQL statements into java api codes.
SparkSession spark = SparkSession.builder().master("local[*]").appName("VariantExample").getOrCreate();
StructType schema = new StructType()
.add("id", DataTypes.IntegerType)
.add("data", DataTypes.VariantType);
Dataset<Row> df = spark.createDataFrame(
Arrays.asList(
RowFactory.create(1, "{\"name\":\"Alice\",\"age\":30}"),
RowFactory.create(2, "[1,2,3,4,5]"),
RowFactory.create(3, "42")
),
schema
);
Dataset<Row> df_sel = df.select(
col("id"),
try_variant_get(col("data"), "$.name", "String").alias("name"),
try_variant_get(col("data"), "$.age", "Integer").alias("age")
).where("name IS NOT NULL");
df_sel.printSchema();
df_sel.show();
But these java codes throw the following exceptions.
root
|-- id: integer (nullable = true)
|-- name: string (nullable = true)
|-- age: integer (nullable = true)
Exception in thread "main" java.lang.ClassCastException: class java.lang.String cannot be cast to class org.apache.spark.unsafe.types.VariantVal (java.lang.String is in module java.base of loader 'bootstrap'; org.apache.spark.unsafe.types.VariantVal is in unnamed module of loader 'app')
at org.apache.spark.sql.catalyst.expressions.variant.VariantGet.nullSafeEval(variantExpressions.scala:282)
at org.apache.spark.sql.catalyst.expressions.BinaryExpression.eval(Expression.scala:692)
at org.apache.spark.sql.catalyst.expressions.Alias.eval(namedExpressions.scala:159)
at org.apache.spark.sql.catalyst.expressions.InterpretedMutableProjection.apply(InterpretedMutableProjection.scala:89)
at org.apache.spark.sql.catalyst.optimizer.ConvertToLocalRelation$$anonfun$apply$48.$anonfun$applyOrElse$83(Optimizer.scala:2231)
at scala.collection.immutable.List.map(List.scala:247)
at scala.collection.immutable.List.map(List.scala:79).....
The "String" parameter of try_variant_get
method has some problems. But I have no idea what is wrong with these java codes. Kindly inform me how to fix these errors.
In your Java code, you're constructing a DataFrame with the data column as a String instead of the expected Variant type, causing a ClassCastException.
We use try_parse_json() to handle the conversion of JSON strings into a format compatible with try_variant_get.
Solution:
import org.apache.spark.sql.*;
import org.apache.spark.sql.types.*;
import static org.apache.spark.sql.functions.*;
import java.util.Arrays;
public class VariantExample {
public static void main(String[] args) {
SparkSession spark = SparkSession.builder()
.master("local[*]")
.appName("VariantExample")
.getOrCreate();
// Define schema with String type for input data
StructType schema = new StructType()
.add("id", DataTypes.IntegerType)
.add("data", DataTypes.StringType);
// Create DataFrame with raw string data
Dataset<Row> df = spark.createDataFrame(
Arrays.asList(
RowFactory.create(1, "{\"name\":\"Alice\",\"age\":30}"),
RowFactory.create(2, "[1,2,3,4,5]"),
RowFactory.create(3, "42")
),
schema
);
// Convert 'data' column to JSON-compatible format using try_parse_json()
Dataset<Row> dfWithParsedJson = df.withColumn("data", expr("try_parse_json(data)"));
// Use try_variant_get to extract fields
Dataset<Row> df_sel = dfWithParsedJson.select(
col("id"),
expr("try_variant_get(data, '$.name', 'STRING')").alias("name"),
expr("try_variant_get(data, '$.age', 'INT')").alias("age")
)
.where("name IS NOT NULL");
// Show results
df_sel.printSchema();
df_sel.show();
}
}
Good luck!