I'm slowly understanding a problem that I have with a time series plot involving data over three financial years.
Here's some sample data.
Financial Year Month Category Value FY
0 2022-04-01 2023 Apr Total 53,616.40 2022-2023
1 2022-05-01 2023 May Total 56,652.97 2022-2023
2 2022-06-01 2023 Jun Total 41,240.00 2022-2023
3 2022-07-01 2023 Jul Total 37,039.38 2022-2023
4 2022-08-01 2023 Aug Total 46,683.56 2022-2023
I can plot the timeseries like this:
# Create the Altair chart
chart = alt.Chart(marketing_block_melted).mark_bar().encode(
x=alt.X('Date:T', sort=FY_MONTH_SHORT_ORDER),
y=alt.Y('Value:Q'),
color='FY:N',
tooltip=['Date:T', 'Value:Q', 'Financial Year:N']
).properties(
width=800,
height=400,
title='Year-by-Year Comparison of Financial Data'
)
chart
[![enter image description here][1]][1]
Which is fine. But I want to plot each year's data across months from April to March so I can compare month finances for a month across years. [1]: https://i.sstatic.net/6p7AP7BM.png
Yes, this can be done by setting a time unit on the x encoding and sorting by the fiscal year month. Here's an example with stock data:
import altair as alt
import polars as pl
from vega_datasets import data
source = data.stocks()
df = pl.DataFrame(source).filter(
pl.col("symbol") == "AAPL",
).with_columns(
fy=pl.col("date").dt.year() - pl.when(pl.col("date").dt.month() <= 3).then(1).otherwise(0),
fy_month=pl.col("date").dt.month() - 3 + pl.when(pl.col("date").dt.month() <= 3).then(12).otherwise(0)
).filter(
pl.col("fy").is_in([2004, 2005, 2006])
)
alt.Chart(df).mark_bar().encode(
x=alt.X("date:O", timeUnit="month", sort=alt.EncodingSortField("fy_month")),
xOffset=alt.XOffset("fy:N"),
y="mean(price)",
color=alt.Color("fy:N")
).properties(width=400)