Search code examples
pythonpandasdataframepandas-styles

Alternate background colors in styled pandas df that also apply to MultiIndex in python pandas


SETUP

I have the following df:

import pandas as pd
import numpy as np

arrays = [
    np.array(["fruit", "fruit", "fruit","vegetable", "vegetable", "vegetable"]),
    np.array(["one", "two", "total", "one", "two", "total"]),
]

df = pd.DataFrame(np.random.randn(6, 4), index=arrays)

df.index.set_names(['item','count'],inplace=True)

def style_total(s):
  m = s.index.get_level_values('count') == 'total'
  return np.where(m, 'font-weight: bold; background-color: #D2D2D2', None)

def style_total_index(s):
  return np.where(s == 'total', 'font-weight: bold; background-color: #D2D2D2','')

(df
 .style
 .apply_index(style_total_index)
 .apply(style_total)
 )

setup_example

WHAT I WANT TO DO/DESIRED OUTPUT

I would like to apply alternating background colors to each row (as well as the MultiIndex) while still keeping the separately colored and formatted total row. Here is a visual example of what I am trying to accomplish:

desired_output_example

As you can see, all rows as well as the MultiIndex are alternating colors with the total keeping its own custom formatting.

WHAT I HAVE TRIED

I have tried a whole bunch of things. I came across this question and this question that both use set_table_styles(), however, this issue on the pandas Github says that "Styler.set_table_styles is not exported to excel. This will not be change...". So, set_table_styles() is not an option here. How can I go about achieving the desired output?


Solution

  • Here's one approach:

    def style_total_index(s, colors, color_map, total):
        # `s` is series with index level values as *values*, name 0 for level 0, etc.
        level = s.name
        
        if level == 0:
    
            # level 0 is quite easy:
                # check if `s` equals its shift + `cumsum` result.
                # `result % 2 == 1` gets us `True` for 1st ('fruit'), 3rd, etc. value,
                # and `False` for 2nd ('vegetable'), 4th, etc.
                # these boolean values we map onto the colors with `color_map`.
            
            style = (s.ne(s.shift()).cumsum() % 2 == 1).map(color_map)
        else:
    
            # level 1:
                # check `s` == 'total' + shift (with `False` for 1st NaN) + `cumsum`.
                # `groupby` and `transform` to resize `colors` to match size of group.
                # mask to add `total` style
            
            style = s.eq('total').shift(fill_value=False).cumsum()
            style = style.groupby(style).transform(lambda x: 
                                                   np.resize(colors, len(x))
                                                  )
            style = style.mask(s == 'total', total)
            
        return style
    
    def style_total(s, colors, total):
        # `s` is series (a column) with index like `df`
    
        # so, similar to `level=1` above, but access `s.index.get_level_values(1)` 
        # and convert that to a series before checking equal to 'total'.
        # rest the same.
        
        style = (s.index.get_level_values(1).to_series().eq('total')
                 .shift(fill_value=False).cumsum()
                )
        style = style.groupby(style).transform(lambda x: np.resize(colors, len(x)))
        style = style.mask(s.index.get_level_values(1) == 'total', total)
        return style.values
    
    # using `np.random.seed(0)` for reproducibility
    
    colors = ['background-color: #CFE2F3', 'background-color: #FFF2CC']
    total = 'font-weight: bold; background-color: #D2D2D2'
    color_map = {k: color for k, color in zip([True, False], colors)}
    
    df_styled = (df
                 .style
                 .apply_index(style_total_index, colors=colors, color_map=color_map, 
                              total=total)
                 .apply(style_total, colors=colors, total=total)
                )
    
    df_styled
    

    Output:

    df_styled

    Export to Excel (for the header setting, cf. here):

    # removing default formatting for header 
    from pandas.io.formats import excel
    excel.ExcelFormatter.header_style = None
    
    df_styled.to_excel('df_styled.xlsx')
    

    Output Excel:

    df_styled exported to Excel

    The above method is set up to handle the situation in which unique level-0 values might have an uneven number of associated rows. That is to say, I have assumed that each level-0 needs to start with #CFE2F3 (light blue), regardless of whether the previous group of rows ended with that color. E.g., suppose we add an extra row only for 'fruit', the above gets us:

    df_styled extra row


    If you just want to 'cycle' through regardless of the transition to a new group, here's an approach that uses cycle from itertools:

    from itertools import cycle
    
    def style_total_index(s, colors, color_map, total):
        level = s.name
    
        if level == 0:
            style = (s.ne(s.shift()).cumsum() % 2 == 1).map(color_map)
        else: 
            colors_cycle = cycle(colors)
            style = [next(colors_cycle) if i != 'total' else total 
                     for i in df.index.get_level_values(level)]
        return style
    
    def style_total(s, colors, total):
        level = 'count'
        colors_cycle = cycle(colors)
        style = [next(colors_cycle) if i != 'total' else total 
                 for i in df.index.get_level_values(level)]
        return style
    
    colors = ['background-color: #CFE2F3', 'background-color: #FFF2CC']
    total = 'font-weight: bold; background-color: #D2D2D2'
    color_map = {k: color for k, color in zip([True, False], colors)}
    
    df_styled = (df
                 .style
                 .apply_index(style_total_index, colors=colors, color_map=color_map, 
                              total=total)
                 .apply(style_total, colors=colors, total=total)
                )
    
    df_styled
    

    Output:

    df_styled cycle method

    Of course, both of these methods are adjustable to reach whatever alternation with a bit of tweaking.