Search code examples
pythontensorflowkeras

Cannot augment images with tensorflow.keras.preprocessing.image import ImageDataGenerator


I want to make an augmented version of my dataset. The dataset was manually labelled and downloaded from this RIWA dataset.

I create class with this code

source_dir = r'./river-water-segmentation-dataset/riwa_v2'
subdir = os.listdir(source_dir)

filepaths = []
labels = []

for i in subdir:
    classpath = os.path.join(source_dir, i)

    if os.path.isdir(classpath):
        file_list = os.listdir(classpath)
        for f in file_list:
            file_path = os.path.join(classpath, f)
            filepaths.append(file_path)
            labels.append(i)
paths = pd.Series(filepaths, name='paths')
labels = pd.Series(labels, name='labels')

df = pd.concat([paths, labels], axis=1)

print(df.head())
print("========================")
print(df['labels'].value_counts())
print("=========================")
print('Total data: ', len(df))

Then make them to 700 each for starter, might increase later for bigger dataset

sample_list = []
max_size = 1500# TODO: change this value

grouping = df.groupby('labels')

for label in df['labels'].unique():
    group = grouping.get_group(label)
    group_size = len(group)

    if group_size > max_size:
        samples = group.sample(max_size, replace=False, weights=None, axis=0).reset_index(drop=True)
    else:
        samples = group.sample(frac=1.0, replace=False, axis=0).reset_index(drop=True)
    sample_list.append(samples)

df = pd.concat(sample_list, axis=0).reset_index(drop=True)
print(df['labels'].value_counts())
print('Total data: ', len(df))

From there I create augmented dataset with these

import os
import shutil
from tensorflow.keras.preprocessing.image import ImageDataGenerator

working_dir = r'./river-water-segmentation-dataset/riwa_v2/cropped'

aug_dir = os.path.join(working_dir, 'aug')
if os.path.isdir(aug_dir):
    shutil.rmtree(aug_dir)
os.mkdir(aug_dir)
for label in df['labels'].unique():
    dir_path=os.path.join(aug_dir, label)
    os.mkdir(dir_path)
print(os.listdir(aug_dir))

target = 700 # set the target count for each class in df
gen = ImageDataGenerator(
    rotation_range = 90,
    horizontal_flip = True,
    vertical_flip = True,
)

grouping = df.groupby('labels') # group by class


for label in df['labels'].unique(): # for every class
    group = grouping.get_group(label) # a dataframe holding only rows with the specificied label
    sample_count = len(group) # determine how many samples there are in this class
    # if group.empty:
    #     print(f"No images found for label '{label}'. Skipping augmentation.")
    #     continue
    if sample_count < target: # if the class has less than target number of images
        aug_img_count = 0
        delta = target - sample_count # number of augmented images to create
        target_dir = os.path.join(aug_dir, label) # define where to write the images

        aug_gen = gen.flow_from_dataframe(
            group,
            x_col = 'paths',
            y_col = None,
            target_size = (1420, 1080), # change this target size based on transfer learning model
            class_mode = None,
            batch_size = 1,
            shuffle = False,
            save_to_dir = target_dir,
            save_prefix = 'aug-',
            save_format='jpg'
        )
        images = next(aug_gen)  # Try fetching a batch
        print(f"Generated {len(images)} images.")

        while aug_img_count < delta:
            images = next(aug_gen)
            aug_img_count += len(images)
            

At first the import from tensorflow.keras.preprocessing.image import ImageDataGenerator is actually moved from from tensorflow.preprocessing.image import ImageDataGenerator from other answer I cannot find anymore because for this version of keras it was moved to this tensorflow.keras.preprocessing.image import route.

Ran the code over 10 minutes and still Found 0 validated image filenames as a result, is there something I did wrong? Is this because I download cpu version of tensorflow?

Edit 1: I did think it was because the size problem so I crop all dataset images to the same size and the code still doesn't work.


Solution

  • The problem lies with the Riwa dataset, which contains images and masks in separate folders. I moved these two folders (images and masks) under the train folder, so that the train folder now contains both images and masks. After using the ImageDataGenerator.flow_from_directory method, I made these adjustments, and the code works . Please refer to this gist