Search code examples
pythongoogle-bigquerypython-polarsrow-number

In Polars: what is the correct equivalent code for row_number() over(partition by) in BigQuery SQL?


I am trying to refactor (translate) a given SQL query to python script using polars library.
I am stuck in one line of query where ROW_NUMBER() function is used followed by OVER(PARTITION BY) function.

Below is the table schema:

product_id (INTEGER)
variant_id (INTEGER)
client_code (VARCHAR)
transaction_date (DATE)
customer_id (INTEGER)
store_id (INTEGER)
invoice_id (VARCHAR)
invoice_line_id (INTEGER)
quantity (NUMERIC)
net_sales_price (NUMERIC)

Below is the SQL query:

SELECT
    product_id,
    variant_id,
    client_code,
    transaction_date,

    ROW_NUMBER() OVER(
        PARTITION BY
            product_id, variant_id, store_id, customer_id, client_code
        ORDER BY
            transaction_date ASC,
            invoice_id ASC,
            invoice_line_id ASC,
            quantity DESC,
            net_sales_price ASC
    ) AS repeat_purchase_seq

FROM transactions

I tried some ways, such as:

example 1: using pl.first().cum_count().over()

new_df = (
    df
    .sort(['product_id', 'variant_id', 'store_id', 'customer_id', 'client_code','transaction_date', 'invoice_id', 'invoice_line_id',pl.col('quantity').reverse(), 'net_sales_price'])
    .with_columns(repeat_purchase_seq = pl.first().cum_count().over(['product_id', 'variant_id', 'store_id', 'customer_id', 'client_code']).flatten())
)

example 2: using pl.rank('ordinal').over()

new_df = (
    df
    .sort(['transaction_date', 'invoice_id', 'invoice_line_id', 'quantity', 'net_sales_price'], descending=[False, False, False, True, False])
    .with_columns(repeat_purchase_seq = pl.struct('transaction_date', 'invoice_id', 'invoice_line_id', 'quantity', 'net_sales_price').rank('ordinal').over(['product_id', 'variant_id', 'store_id', 'customer_id', 'client_code']))
)

Both the examples have some or the other problem,
I tried to compare the table created by SQL with the dataframe created using Polars, out of 17 million rows, there are around 250,000 rows which doesn't match.

So is there a better way to handle this ROW_NUMBER() OVER(PARTITION BY) situation?

Edit - Below is the answer by @roman, which helped in my case:

partition_by_keys = ["product_id", "variant_id", "store_id", "customer_id", "client_code"]
order_by_keys = ["transaction_date", "invoice_id", "invoice_line_id", "quantity", "net_sales_price"]
order_by_descending = [False, False, False, True, False]

order_by = [-pl.col(col) if desc else pl.col(col) for col, desc in zip(order_by_keys, order_by_descending)]

df.with_columns(
    pl.struct(order_by)
    .rank("ordinal")
    .over(partition_by_keys)
    .alias("rn")
)

Solution

  • You could use pl.Expr.rank() but it is applied to one pl.Expr/column. You can, of course, create this column out of sequence of columns with pl.struct() and rank it:

    partition_by_keys = ["product_id", "variant_id", "store_id", "customer_id", "client_code"]
    order_by_keys = ["transaction_date", "invoice_id", "invoice_line_id", "quantity", "net_sales_price"]
    
    df.with_columns(
        pl.struct(order_by_keys)
        .rank("ordinal")
        .over(partition_by_keys)
        .alias("rn")
    )
    

    But there's a problem with applying asc and desc sort based on struct' fields. If you had numeric fields you could use negation, but you have string-typed columns there as well. In your case you can actually do it, cause the only column where you want to sort descending is quantity:

    partition_by_keys = ["product_id", "variant_id", "store_id", "customer_id", "client_code"]
    order_by_keys = ["transaction_date", "invoice_id", "invoice_line_id", "quantity", "net_sales_price"]
    order_by_descending = [False, False, False, True, False]
    
    order_by = [-pl.col(col) if desc else pl.col(col) for col, desc in zip(order_by_keys, order_by_descending)]
    
    df.with_columns(
        pl.struct(order_by)
        .rank("ordinal")
        .over(partition_by_keys)
        .alias("rn")
    )
    

    And more generic approach would be to use pl.DataFrame.sort() and pl.int_range(). I’ve added pl.DataFrame.with_row_index() and additional sort to return back to original order.

    partition_by_keys = ["product_id", "variant_id", "store_id", "customer_id", "client_code"]
    order_by_keys = ["transaction_date", "invoice_id", "invoice_line_id", "quantity", "net_sales_price"]
    order_by_descending = [False, False, False, True, False]
    
    (
        df.with_row_index()
        .sort(order_by_keys, descending=order_by_descending)
        .with_columns(
            rn = pl.int_range(pl.len()).over(partition_by_keys)
        )
        .sort(“index”)
        .drop(“index”)
    
    )