Search code examples
pandasdataframeconcatenationappend

Append a value to a single df column, without concatenating a row


I have a pandas df where each column have some numerical values, followed by some NaNs. The number of values and NaNs differ between columns. I want to append a single value at 'first non-NaN position' in a specific column.

My pandas df looks something like this:

   A   B   C   D
0  5   7   2   3
1  2   1  NaN  4
2  4   6  NaN  5
3 NaN  4  NaN  6
4 NaN  3  NaN NaN
5 NaN NaN NaN NaN

I want to add ("append") a value at the bottom of a specific column, for instance, I want to change the first 'NaN' in column 'A' to the value '3'. The desired outcome should be:

   A   B   C   D
0  5   7   2   3
1  2   1  NaN  4
2  4   6  NaN  5
3  3   4  NaN  6
4 NaN  3  NaN NaN
5 NaN NaN NaN NaN

I would like to use 'append', but it's deprecated. I have tried 'concat', but I don't want a whole new row, just append a single value at the bottom of a single column.


Solution

  • You can use Series.fillna with limit=1:

    df['A'] = df['A'].fillna(3, limit=1)
    

    Output:

         A    B    C    D
    0  5.0  7.0  2.0  3.0
    1  2.0  1.0  NaN  4.0
    2  4.0  6.0  NaN  5.0
    3  3.0  4.0  NaN  6.0
    4  NaN  3.0  NaN  NaN
    5  NaN  NaN  NaN  NaN
    

    An alternative could be to use Series.isna + Series.idxmax and assign via df.loc. Here you first want to check if isna results in any True values. If not, you will overwrite the first value in the column:

    if df['A'].isna().any():
        df.loc[df['A'].isna().idxmax(), 'A'] = 3