Search code examples
cudagpu

Why does this CUDA kernel not accurately handling non-square matrix multiplication?


My CUDA kernel is not accurately handling matrix multiplication of non square sizes. For example, with input of ./a.out 3 5 3 will not pass my unit test of comparing each value with the CPU sequential version up to a calculated precision.

Matrix A is of size m x k. Matrix B is of size k x n. Output matrix is of size m x n. The input is given as ./a.out m k n


#include<stdio.h>
#include<stdlib.h>
#include<sys/time.h>
#include<cmath>
#include <math.h>

/******************************************************************************************************* */
/* Helper Functions*/
/* START */

#define CHECK(call) { \
    const cudaError_t cuda_ret = call; \
    if(cuda_ret != cudaSuccess){\
        printf("Error: %s:%d, ", __FILE__, __LINE__); \
        printf("code: %d, reason:%s\n", cuda_ret, cudaGetErrorString(cuda_ret)); \
        exit(-1); \
    } \
}

bool verify(float* gpu_result, float* cpu_result, unsigned int nRows, unsigned int nCols, int precision){
    const float epsilon = std::pow(10, -precision);

    for(int i = 0; i < nRows * nCols; i++){

        if(std::fabs(cpu_result[i] - gpu_result[i]) > epsilon) {
            return false;
        }
    }
    return true;
}

int calculatePrecision(int m, int n, int k) {
    int totalOperations = m * n * k;
    const int C = 10;
    int precision = (int) fmax(1, C / log10(totalOperations));
    return precision;
}

unsigned int isqrt(unsigned int y)
{
    unsigned int L = 0;

    while ((L + 1) * (L + 1) <= y)
        L = L + 1;

    return L;
}

int calculateTileSize(int sharedMemBytesPerBlock){
    int maxTileSize = (int) isqrt((sharedMemBytesPerBlock / 8));

    if(maxTileSize/16 == 0)
        return maxTileSize;

    return min(maxTileSize, 32);
}

/* END */
/* Helper Functions*/
/******************************************************************************************************* */

/******************************************************************************************************* */
/* Matrix Multiplication Functions*/
/* START */
void basicSgemm_h(float *a_h, float *b_h, float *c_h, unsigned int m, unsigned int k, unsigned int n){

    for(int outputMatrixIndex = 0; outputMatrixIndex < m * n; outputMatrixIndex++){
        int row = outputMatrixIndex / n;
        int col = outputMatrixIndex % n;

        float sum = 0.0;

        for(int i = 0; i < k; i++)
            sum += a_h[row * k + i] * b_h[i * n + col];
        
        c_h[outputMatrixIndex] = sum;
    }
    
    printf("CPU\n");
    for(int i = 0; i < m*n; i++){
        printf("%f ", c_h[i]);
    }
}

__global__ void matrixMulKernel_1thread1element(float* a_d, float* b_d, float* c_d, unsigned int m, unsigned int k, unsigned int n){
    int row = blockIdx.y * blockDim.y + threadIdx.y; 
    int col = blockIdx.x * blockDim.x + threadIdx.x;
    float sum = 0.0f;
    if(col < n && row < m) {
        for(int i = 0; i < k; i++) {
            sum += a_d[row * k + i] * b_d[i * n + col];
        }
        c_d[row * n + col] = sum;
    }
} 

__global__ void matrixMulKernel_tiled(float* a_d, float* b_d, float* c_d, unsigned int m, unsigned int k, unsigned int n, int tile_size, int As_size, int Bs_size){

    extern __shared__ float As_Bs[];

    float *A_s = (float *) As_Bs;
    float *B_s = (float *) As_Bs + As_size;

    int row = blockIdx.y * blockDim.y + threadIdx.y;
    int col = blockIdx.x * blockDim.x + threadIdx.x;

    float sum = 0.0f;

    for(int tile = 0; tile < (k-1)/tile_size +1; tile++) {

        if( tile * tile_size + threadIdx.x < k && row < m){
            A_s[threadIdx.y * tile_size + threadIdx.x] = a_d[row*n + tile*tile_size + threadIdx.x];
        }
        else{
            A_s[threadIdx.y * tile_size + threadIdx.x] = 0;
        }

        if( tile * tile_size + threadIdx.y < k && col < n){
            B_s[threadIdx.y * tile_size + threadIdx.x] = b_d[(tile*tile_size + threadIdx.y)*n + col];
        }
        else{
            B_s[threadIdx.y * tile_size + threadIdx.x] = 0;
        }

        __syncthreads();

        for(unsigned int i = 0; i < tile_size; i++) {
            sum += A_s[threadIdx.y * tile_size + i] * B_s[i * tile_size + threadIdx.x];
        }

        __syncthreads();
    }

    if(row < m && col < n)
        c_d[row*n + col] = sum;
} 

/* Matrix Multiplication Functions*/
/* END */
/******************************************************************************************************* */

void basicSgemm_d_1thread1element(float* a_h, float* b_h, float* c_h, unsigned int m, unsigned int k, unsigned int n){

    // (1) allocate device memory for arrays x_d, y_d, z_d
    float *a_d, *b_d, *c_d;
    cudaMalloc((void**) &a_d, sizeof(float)*m*k);
    cudaMalloc((void**) &b_d, sizeof(float)*k*n);
    cudaMalloc((void**) &c_d, sizeof(float)*m*n);

    // (2) copy matrices a_h and b_h to device memory a_d and b_d, respectively
    cudaMemcpy(a_d, a_h, sizeof(float)*m*k, cudaMemcpyHostToDevice);
    cudaMemcpy(b_d, b_h, sizeof(float)*k*n, cudaMemcpyHostToDevice);

    // (3) call kernel to launch a grid of threads to perform the matrix multiplcation on GPU
    dim3 gridDim((n + 16 - 1) / 16, (m + 16 - 1) / 16);
    dim3 blockDim(16, 16);

    matrixMulKernel_1thread1element<<<gridDim, blockDim>>>(a_d, b_d, c_d, m, k, n);
    CHECK(cudaGetLastError());
    CHECK(cudaDeviceSynchronize());

    // (4) Copy the result data from device memory of array c_d to host memory of array c_h
    cudaMemcpy(c_h, c_d, sizeof(float)*m*n, cudaMemcpyDeviceToHost);

    printf("\n");
    for(int i = 0; i < m*n; i++){
        printf("%f ", c_h[i]);
    }

    // (5) free device memory of a_d, b_d, and c_d 
    cudaFree(a_d);
    cudaFree(b_d);
    cudaFree(c_d);
}

void basicSgemm_d_tiled(float* a_h, float* b_h, float* c_h, unsigned int m, unsigned int k, unsigned int n){

    // (1) allocate device memory for arrays x_d, y_d, z_d
    float *a_d, *b_d, *c_d;
    cudaMalloc((void**) &a_d, sizeof(float)*m*k);
    cudaMalloc((void**) &b_d, sizeof(float)*k*n);
    cudaMalloc((void**) &c_d, sizeof(float)*m*n);

    // (2) copy matrices a_h and b_h to device memory a_d and b_d, respectively
    cudaMemcpy(a_d, a_h, sizeof(float)*m*k, cudaMemcpyHostToDevice);
    cudaMemcpy(b_d, b_h, sizeof(float)*k*n, cudaMemcpyHostToDevice);

    // (3) call kernel to launch a grid of threads to perform the matrix multiplcation on GPU
    cudaDeviceProp devProp;
    cudaGetDeviceProperties(&devProp, 0);
    int sharedMemBytesPerBlock = devProp.sharedMemPerBlock;
    int TILE_SIZE = calculateTileSize(sharedMemBytesPerBlock);

    int As_size = TILE_SIZE * TILE_SIZE;

    dim3 gridDim((n + TILE_SIZE - 1) / TILE_SIZE, (m + TILE_SIZE - 1) / TILE_SIZE);
    dim3 blockDim(TILE_SIZE, TILE_SIZE);
    unsigned int dynamicallyConfiguredSharedMemorySize = 2 * TILE_SIZE * TILE_SIZE * sizeof(float);

    printf("\nGrid Dimensions: %d, %d, 1\n", (n + TILE_SIZE - 1) / TILE_SIZE, (m + TILE_SIZE - 1) / TILE_SIZE);
    printf("\nBlock Dimensions: %d, %d, 1\n", TILE_SIZE, TILE_SIZE);

    matrixMulKernel_tiled<<<gridDim, blockDim, dynamicallyConfiguredSharedMemorySize>>>(a_d, b_d, c_d, m, k, n, TILE_SIZE, As_size, As_size);
    CHECK(cudaGetLastError());
    CHECK(cudaDeviceSynchronize());

    // (4) Copy the result data from device memory of array c_d to host memory of array c_h
    cudaMemcpy(c_h, c_d, sizeof(float)*m*n, cudaMemcpyDeviceToHost);

    printf("\n");
    for(int i = 0; i < m*n; i++){
        printf("%f ", c_h[i]);
    }

    // (5) free device memory of a_d, b_d, and c_d 
    cudaFree(a_d);
    cudaFree(b_d);
    cudaFree(c_d);
}

int main(int argc, char* argv[]){

    int m = atoi(argv[1]);
    int k = atoi(argv[2]);
    int n = atoi(argv[3]);

    srand(time(0));

    // matrix 𝐴 is of size 𝑚 × 𝑘, matrix 𝐵 is of size 𝑘 × 𝑛, and matrix 𝐶 is of size 𝑚 × 𝑛.
    float* a_h = (float*) malloc(sizeof(float)*m*k);
    for(unsigned int i = 0; i < m*k; i++) a_h[i] = rand()%100/100.0;

    float* b_h = (float*) malloc(sizeof(float)*k*n);
    for(unsigned int i = 0; i < k*n; i++) b_h[i] = rand()%100/100.0;

    float* c_h = (float*) calloc(m*n, sizeof(float));

    float* cpu_result = (float*) calloc(m*n, sizeof(float));

    int precision = calculatePrecision(m, k, n);

    basicSgemm_h(a_h, b_h, cpu_result, m, k, n);

    printf("\nPrecision Threshold: %d decimal places.\n", precision);
    printf("\nMatrix Dimensions: \n");
    printf("\tA: %d x %d\n", m, k);
    printf("\tB: %d x %d\n", k, n);
    printf("\tC: %d x %d\n", m, n);

    bool testsPassed = true;

    basicSgemm_d_1thread1element(a_h, b_h, c_h, m, k, n);
    if(!verify(c_h, cpu_result, m, n, precision)) testsPassed = false;

    basicSgemm_d_tiled(a_h, b_h, c_h, m, k, n);
    if(!verify(c_h, cpu_result, m, n, precision)) testsPassed = false;

    if(testsPassed){
        printf("\nVerifying Results... Tests Passed!\n");
    }else{
        printf("\nVerifying Results... Tests Failed!\n");
    }
    
    free(a_h);
    free(b_h);
    free(c_h);
    free(cpu_result);

    return 0;
}

Example input/output (non-square -> wrong result)

$ ./exa2 5 4 5
CPU
1.666100 1.369100 1.919800 1.667600 1.883500 1.325600 0.846100 1.363300 1.427000 1.134500 1.652500 1.309200 1.748300 1.569400 1.971300 1.271500 0.816300 1.110400 1.320700 1.329600 1.228700 0.615700 1.072600 1.030400 1.035500 
Precision Threshold: 5 decimal places.

Matrix Dimensions: 
        A: 5 x 4
        B: 4 x 5
        C: 5 x 5

1.666100 1.369100 1.919800 1.667600 1.883500 1.325600 0.846100 1.363300 1.427000 1.134500 1.652500 1.309200 1.748300 1.569400 1.971300 1.271500 0.816300 1.110400 1.320700 1.329600 1.228700 0.615700 1.072600 1.030400 1.035500 
Grid Dimensions: 1, 1, 1

Block Dimensions: 32, 32, 1


1.666100 1.369100 1.919800 1.667600 1.883500 1.205200 0.806600 1.154200 1.267000 1.212100 1.480000 1.021800 1.607400 1.558900 1.347600 1.369500 1.298900 1.821400 1.513800 1.581700 0.000000 0.000000 0.000000 0.000000 0.000000 
Verifying Results... Tests Failed!

Another example of input/output (square -> correct result)

$ ./exa2 4 4 4
CPU
1.477500 1.386000 2.126100 1.383100 0.486400 0.600900 0.607700 0.407000 0.295800 0.505500 0.445400 0.199600 0.580000 0.621200 1.033500 0.544400 
Precision Threshold: 5 decimal places.

Matrix Dimensions: 
        A: 4 x 4
        B: 4 x 4
        C: 4 x 4

1.477500 1.386000 2.126100 1.383100 0.486400 0.600900 0.607700 0.407000 0.295800 0.505500 0.445400 0.199600 0.580000 0.621200 1.033500 0.544400 
Grid Dimensions: 1, 1, 1

Block Dimensions: 32, 32, 1


1.477500 1.386000 2.126100 1.383100 0.486400 0.600900 0.607700 0.407000 0.295800 0.505500 0.445400 0.199600 0.580000 0.621200 1.033500 0.544400 
Verifying Results... Tests Passed!

I have tried double checking my boundary conditions, ensuring that I am correctly populating the shared memory tile matrix and initializing the correct number of blocks for the grid dimensions. I have inspected output of the code and see that some of the final values of the output matrix are either not calculated or are not precise.


Solution

  • Credit given to user @paleonix

    line A_s[threadIdx.y * tile_size + threadIdx.x] = a_d[row*n + tile*tile_size + threadIdx.x];

    should be changed to

    A_s[threadIdx.y * tile_size + threadIdx.x] = a_d[row*k + tile*tile_size + threadIdx.x];
    

    this is due to incorrect indexing of global memory Matrix A into the shared memory matrix A_s, resulting is an incorrect partial sum.