Edit Oct-18-2024:
An even more trivial reproduction of the problem is shown below.
mypy_arg_type.py
:
import numpy as np
from numpy.typing import NDArray
import random
def winner(_: NDArray[np.bytes_]) -> bytes | None:
return b"." if bool(random.randint(0, 1)) else None
board = np.full((2, 2), ".", "|S1")
for w in np.apply_along_axis(winner, 0, board):
print(w)
>> python mypy_arg_type.py
b'.'
None
>> mypy mypy_arg_type.py
mypy_arg_type.py:9: error: Argument 1 to "apply_along_axis" has incompatible type "Callable[[ndarray[Any, dtype[bytes_]]], bytes | None]"; expected "Callable[[ndarray[Any, dtype[Any]]], _SupportsArray[dtype[Never]] | _NestedSequence[_SupportsArray[dtype[Never]]]]" [arg-type]
mypy_arg_type.py:9: note: This is likely because "winner" has named arguments: "_". Consider marking them positional-only
Found 1 error in 1 file (checked 1 source file)
Original question:
I'm working on a problem to determine the winner of a Connect Four game, given the position of the pieces on the board.
The board is of size 6x7, and each column is marked with a letter from A
to G
. The winner, if any, will have 4 pieces of identical color in a row, column, diagonal or anti-diagonal.
Example:
Input: ["A_Red", "B_Yellow", "A_Red", "B_Yellow", "A_Red", "B_Yellow", "G_Red", "B_Yellow"]
Board:
R Y . . . . R
R Y . . . . .
R Y . . . . .
. Y . . . . .
. . . . . . .
. . . . . . .
Winner: Yellow
The following code determines a winner.
import itertools
import numpy as np
from numpy.typing import NDArray
def who_is_winner(pieces: list[str]) -> str:
def parse_board() -> NDArray[np.bytes_]:
m, n = 6, 7
indices = [0] * n
# https://numpy.org/doc/stable/user/basics.strings.html#fixed-width-data-types
# One-byte encoding, the byteorder is ‘|’ (not applicable)
board = np.full((m, n), ".", "|S1")
for p in pieces:
col = ord(p[0]) - ord("A")
board[indices[col], col] = p[2]
indices[col] += 1
return board
def winner(arr: NDArray[np.bytes_]) -> np.bytes_ | None:
i = len(arr)
xs = next(
(xs for j in range(i - 3) if (xs := set(arr[j : j + 4])) < {b"R", b"Y"}),
{None},
)
return xs.pop()
def axis(x: int) -> np.bytes_ | None:
# https://numpy.org/doc/2.0/reference/generated/numpy.apply_along_axis.html#numpy-apply-along-axis
# Axis 0 is column-wise, 1 is row-wise.
return next(
(w for w in np.apply_along_axis(winner, x, board) if w is not None), None
)
def diag(d: int) -> np.bytes_ | None:
# https://numpy.org/doc/stable/reference/generated/numpy.diagonal.html#numpy-diagonal
# Diagonal number is w.r.t. the main diagonal.
b = board if bool(d) else np.fliplr(board)
return next(
(w for d in range(-3, 4) if (w := winner(b.diagonal(d))) is not None), None
)
board = parse_board()
match next(
(
w
for f, i in itertools.product((axis, diag), (0, 1))
if (w := f(i)) is not None
),
None,
):
case b"Y":
return "Yellow"
case b"R":
return "Red"
case _:
return "Draw"
However, this generates a mypy violation as follows:
error: Argument 1 to "apply_along_axis" has incompatible type "Callable[[ndarray[Any, dtype[bytes_]]], bytes_ | None]"; expected "Callable[[ndarray[Any, dtype[Any]]], _SupportsArray[dtype[bytes_]] | _NestedSequence[_SupportsArray[dtype[bytes_]]]]" [arg-type]
note: This is likely because "winner" has named arguments: "arr". Consider marking them positional-only
According to the documentation of apply_along_axis, it is supposed to return a single value, which is consistent with the code above.
How to fix this violation? Making function winner
positional-only makes no difference, except that suggestion is gone.
I'm using Python 3.12.5 with mypy 1.11.2.
By studying the overloaded signatures of apply_along_axis
, I came to the conclusion that it is not defined to return None
, causing the mypy violation. There's no real reason to not return None
though, and I've opened a mypy ticket about it. We will see whether it gets kicked to numpy.
Overload 1:
def [_P`-1, _SCT: generic] apply_along_axis(func1d: Callable[[ndarray[Any, dtype[Any]], **_P], _SupportsArray[dtype[_SCT]] | _NestedSequence[_SupportsArray[dtype[_SCT]]]], axis: SupportsIndex, arr: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], *args: _P.args, **kwargs: _P.kwargs) -> ndarray[Any, dtype[_SCT]]
Overload 2:
def [_P`-1] apply_along_axis(func1d: Callable[[ndarray[Any, dtype[Any]], **_P], Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes]], axis: SupportsIndex, arr: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], *args: _P.args, **kwargs: _P.kwargs) -> ndarray[Any, dtype[Any]]
I modified the function winner
to return a null byte string (b""
) instead of None
, and replaced all return types of np.bytes_
to bytes
. That fixed the problem.