I have a polars dataframe, and for some of the columns I want to count the number of "-1" (if character) and -1 (if numeric). I would like to really make this a fast query, so I'm very interested in learning proper polars code such that it runs very fast.
import polars as pl
import polars.selectors as cs
import numpy as np
df = pl.DataFrame( {"int_1": [1, 2, 3, -1, 5],
"char_1": ["foo", "ham", "spam", "egg", "-1"],
"not_of_interest": np.random.rand(5),
"groups": ["A", "A", "B", "C", "B"],
"int_2": [12, 12, 13, 14, 15]
}
)
Desired dataframe looks like this:
shape: (3, 4)
┌────────┬───────┬───────┬────────┐
│ groups ┆ int_1 ┆ int_2 ┆ char_1 │
│ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ i64 ┆ i64 ┆ i64 │
╞════════╪═══════╪═══════╪════════╡
│ B ┆ 0 ┆ 0 ┆ 1 │
│ C ┆ 1 ┆ 0 ┆ 0 │
│ A ┆ 0 ┆ 0 ┆ 0 │
└────────┴───────┴───────┴────────┘
My attempt thus far:
df.select(cs.numeric() | cs.by_name("groups")) \
.group_by("groups").agg((pl.col("*") == pl.lit(-1)).sum())
df.select(cs.string() | cs.by_name("groups")) \
.group_by("groups").agg((pl.col("*") == pl.lit("-1")).sum())
Then I might join these two tables, but I want to do this in one query.
I would also like to define two lists, one for what variables to group on, and another to be the set of variables that I am interested in finding -1s
for, such that I don't have to hardcode "groups", but I am really not sure if what I'm doing is good code or not:
cols_to_check = ['int_1', 'int_2', 'char_1']
group_cols = ['groups']
df.select((cs.string() & cs.by_name(*cols_to_check)) | cs.by_name(*group_cols)) \
.group_by(group_cols).agg((pl.col("*") == pl.lit("-1")).sum())
df.select((cs.numeric() & cs.by_name(*cols_to_check)) | cs.by_name(*group_cols)) \
.group_by(group_cols).agg((pl.col("*") == pl.lit(-1)).sum())
EDIT: I think I have managed it.
# attempt:
df.group_by(group_cols).agg(((cs.numeric() & cs.by_name(*[cols_to_check])) == -1).sum(),
((cs.string() & cs.by_name(*[cols_to_check])) == "-1").sum())
I honestly didn't know this would work. I guess I lack understanding of when column selectors can be used...
As you are testing for the "same value", another approach could be to .cast()
all the columns.
Casting to int:
(df.group_by(group_cols)
.agg((pl.col(cols_to_check).cast(int, strict=False) == -1).sum())
)
shape: (3, 4)
┌────────┬───────┬───────┬────────┐
│ groups ┆ int_1 ┆ int_2 ┆ char_1 │
│ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ u32 ┆ u32 ┆ u32 │
╞════════╪═══════╪═══════╪════════╡
│ A ┆ 0 ┆ 0 ┆ 0 │
│ B ┆ 0 ┆ 0 ┆ 1 │
│ C ┆ 1 ┆ 0 ┆ 0 │
└────────┴───────┴───────┴────────┘
Casting to string:
(df.group_by(group_cols)
.agg((pl.col(cols_to_check).cast(pl.String) == "-1").sum())
)