My code is this:
import tensorflow as tf
import tensorflow_datasets as tfds
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
"R:\Imagenes\DS_Graph\Train",
labels='inferred', # Infer labels from subdirectory names
label_mode='binary', # For binary classification (cats vs. dogs)
#image_size=(IMG_WIDTH, IMG_HEIGHT),
interpolation='nearest',
batch_size=32,
shuffle=True # Shuffle training data
)
validation_ds = tf.keras.preprocessing.image_dataset_from_directory(
"R:\Imagenes\DS_Graph\Validation",
# ... (same parameters as train_ds)
)
data, metadata = tfds.load('DS_Graph', as_supervised=True, with_info = True)
I keep getting the error
module 'tensorflow_datasets' has no attribute 'load'
i upgraded tensorflow and data set, an the tensorflow_datasets but it didn't work.
Note: i'm running tensorflow locally, i use and previous version of python in order to install it using anaconda browser.
Since you are loading your dataset directly form the directories by using "image_dataset_from_directory", thus there is no need of using "tfds.load" for your specific dataset.
Your revised code should look something like this:
import tensorflow as tf
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
r"R:\Imagenes\DS_Graph\Train",
labels='inferred',
label_mode='binary',
interpolation='nearest',
batch_size=32,
shuffle=True
)
validation_ds = tf.keras.preprocessing.image_dataset_from_directory(
r"R:\Imagenes\DS_Graph\Validation",
labels='inferred',
label_mode='binary',
interpolation='nearest',
batch_size=32,
shuffle=False
)