I would like to preface this by apologizing for the lack of reproducibility of my question because if I convert my dataframe to a dictionary and turn that into a dataframe again I am not getting the issue.
Nevertheless, this is the query I am using on BigQuery:
SELECT
published_at,
from_author_id,
text
FROM
`project.message.message`
"""
I then turn into into a datrame using
client = bigquery.Client(location="europe-west1", project="project")
df = client.query(sql).to_dataframe()
Now running the following gives me an erroneous output:
import pandas as pd
#df['published_at'] = pd.to_datetime(df['published_at'])
df = df.sort_values(by=['from_author_id', 'published_at'])
df.groupby('from_author_id').rolling('3s', on='published_at')['text'].count()
using .to_datetime() has no impact on the result of the rolling function
from_author_id published_at
0001fcf4-94f5-4e42-8444-0cb6c2870bdc 2024-08-19 18:28:50.197000+00:00 1.0
2024-08-19 18:33:26.837000+00:00 2.0
2024-08-19 18:33:42.960000+00:00 3.0
2024-08-19 18:33:57.083000+00:00 4.0
2024-08-19 18:34:18.863000+00:00 5.0
...
fff7a574-a2fe-4eac-b7c6-d5de8dc5ff0c 2024-08-19 16:26:24.252000+00:00 6.0
2024-08-19 16:32:40.697000+00:00 7.0
2024-08-19 16:32:42.013000+00:00 8.0
2024-08-19 18:09:03.469000+00:00 1.0
2024-08-19 18:09:04.979000+00:00 2.0
As you can see there is more than 3 seconds between each of the messages of the first author and so the rolling count should return 1.
Interestingly this function does produce the desired output:
def compute_correct_rolling_count(df, window_seconds=3):
msg_counts = []
for _, group_df in df.groupby('from_author_id'):
count_list = []
for i in range(len(group_df)):
start_time = group_df.iloc[i]['published_at'] - pd.Timedelta(seconds=window_seconds)
count = group_df[(group_df['published_at'] > start_time) & (group_df['published_at'] <= group_df.iloc[i]['published_at'])].shape[0]
count_list.append(count)
msg_counts.extend(count_list)
return msg_counts
# Compute the rolling count within a 3-second window for each author
df['msg_count_last_3secs'] = compute_correct_rolling_count(df, window_seconds=3)
Schema for table project.message.message: published_at (TIMESTAMP) from_author_id (STRING) text (STRING) other fields
Additionally, Default rounding mode ROUNDING_MODE_UNSPECIFIED Partitioned by DAY Partitioned on field published_at
I too am using google-cloud-bigquery 3.25.0
I believe the issue was because published_at
was of type datetime64[us, UTC]
instead of datetime64[ns, UTC]
as can be seen here Confusing output with pandas rolling window with datetime64[us] dtype