I am trying to plot a glmer output but I either get two legends or the one without the color (I probably doubled the color coding).Also I am not sure where the dotted line comes from. This is the code I used:
plot2d = ggpredict(m2d, terms = c("Verbstellung", "group"))
plot(plot2d, connect_lines = TRUE, colors = c("red", "blue")) +
aes(linetype = .data[["group"]]) +
ggeasy::easy_center_title()+
ggtitle("Accuracy in Test Session \n Acceptable Sentences only") +
theme(plot.title = element_text(size = 18, face = "bold")) +
xlab("Verb Position") + ylab("Accuracy in Percent")+
easy_all_text_size(15)+
easy_all_text_color("black")+
scale_color_manual(name = "Group", values = c("red", "blue"), labels = c("LR", "NLR"))
group subj Verbstellung answer.corr Set actor2
nlr 38 V1 1 2 typical
nlr 38 V1 0 3 typical
nlr 38 V1 1 1 typical
nlr 38 V2 1 3 typical
nlr 38 V3 0 3 typical
nlr 38 V3 1 1 typical
nlr 38 V3 1 2 typical
nlr 38 V2 1 1 typical
lr 35 V1 0 1 typical
lr 35 V3 1 2 typical
lr 35 V2 1 3 typical
lr 35 V2 0 1 typical
lr 35 V3 0 1 typical
lr 35 V1 1 3 typical
lr 35 V3 1 3 typical
lr 35 V1 1 2 typical
Here is the glmer model I used:
m2d = glmer(answer.corr ~ group + actor2 + Verbstellung + group:actor2 + group:Verbstellung + (1|subj) + (1|Set), data=data, family="binomial", control = glmerControl(optimizer="nlopt", optCtrl=list(maxfun=1e5), calc.derivs = FALSE))
Here is the model output (m2d):
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: binomial ( logit )
Formula: answer.corr ~ group + actor2 + Verbstellung + group:actor2 + group:Verbstellung + (1 | subj) + (1 | Set)
Data: data_akz
AIC BIC logLik deviance df.resid
4033.361 4101.507 -2006.680 4013.361 6722
Random effects:
Groups Name Std.Dev.
subj (Intercept) 1.5788
Set (Intercept) 0.1448
Number of obs: 6732, groups: subj, 53; Set, 3
Fixed Effects:
(Intercept) group1 actor21 VerbstellungV2 VerbstellungV3 group1:actor21 group1:VerbstellungV2 group1:VerbstellungV3
2.3894 0.5053 0.4712 0.4055 0.7303 0.1013 -0.3174 -0.5449
I think I've found the solution.
a) I had to get rid of this line:
aes(linetype = .data[["group"]]) +
b) I had to insert this command:
scale_color_manual(name = "Group", values = c("red", "blue"), labels = c("LR", "NLR"))
The new code looks as this:
plot2d = ggpredict(m2d, terms = c("Verbstellung", "group"))
plot(plot2d, connect_lines = TRUE) +
ggeasy::easy_center_title()+
ggtitle("Accuracy in Test Session \n Acceptable Sentences only") +
theme(plot.title = element_text(size = 18, face = "bold")) +
xlab("Verb Position") + ylab("Accuracy in Percent")+
easy_all_text_size(15)+
easy_all_text_color("black")+
scale_color_manual(name = "Group", values = c("red", "blue"), labels = c("LR", "NLR"))
I can't really explain why it worked, but it aktually worked...