Search code examples
pythonmachine-learningdecision-tree

KeyError in Decision Tree during prediction


I want to create predict and predict_proba methods in my DecisionTreeClassifier implementation, but it gives the error

Traceback (most recent call last):
  File "c:\Users\Nijat\project.py", line 136, in <module>
    print(model.predict(X))
          ^^^^^^^^^^^^^^^^
  File "c:\Users\Nijat\project.py", line 128, in predict
    return [1 if p[0] > 0.5 else 0 for p in self.predict_proba(X)]
                                            ^^^^^^^^^^^^^^^^^^^^^
  File "c:\Users\Nijat\project.py", line 121, in predict_proba
    class1_proba = self.bypass_tree(self.tree, sample)
                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "c:\Users\Nijat\project.py", line 105, in bypass_tree
    while node['type'] == 'node':
          ~~~~^^^^^^^^
KeyError: 'type'

Here's my code:

import numpy as np
import pandas as pd

class MyTreeClf:
    def __init__(self, max_depth=5, min_samples_split=2, max_leafs=20):
        self.max_depth = max_depth
        self.min_samples_split = min_samples_split
        self.max_leafs = max_leafs
        self.tree = None
        self.leafs_cnt = 0

    def node_entropy(self, probs):
        return -np.sum([p * np.log2(p) for p in probs if p > 0])

    def node_ig(self, x_col, y, split_value):
        left_mask = x_col <= split_value
        right_mask = x_col > split_value

        if len(x_col[left_mask]) == 0 or len(x_col[right_mask]) == 0:
            return 0

        left_counts = np.bincount(y[left_mask])
        right_counts = np.bincount(y[right_mask])

        left_probs = left_counts / len(y[left_mask]) if len(y[left_mask]) > 0 else np.zeros_like(left_counts)
        right_probs = right_counts / len(y[right_mask]) if len(y[right_mask]) > 0 else np.zeros_like(right_counts)

        entropy_after = (len(y[left_mask]) / len(y) * self.node_entropy(left_probs) +
                         len(y[right_mask]) / len(y) * self.node_entropy(right_probs))
        entropy_before = self.node_entropy(np.bincount(y) / len(y))

        return entropy_before - entropy_after

    def get_best_split(self, X: pd.DataFrame, y: pd.Series):
        best_col, best_split_value, best_ig = None, None, -np.inf

        for col in X.columns:
            sorted_unique_values = np.sort(X[col].unique())

            for i in range(1, len(sorted_unique_values)):
                split_value = (sorted_unique_values[i - 1] + sorted_unique_values[i]) / 2

                ig = self.node_ig(X[col], y, split_value)

                if ig > best_ig:
                    best_ig = ig
                    best_col = col
                    best_split_value = split_value

        return best_col, best_split_value

    def fit(self, X: pd.DataFrame, y: pd.Series, depth=1, node=None):
        if self.max_leafs < 2:
            self.leafs_cnt = 2
            return

        if node is None:
            node = {}
            self.tree = node

        best_col, best_split_value = self.get_best_split(X, y)

        node['type'] = None
        node['feature'] = best_col
        node['threshold'] = best_split_value

        if len(y.unique()) == 1:
            self.leafs_cnt += 1
            node['type'] = 'leaf'
            node['class_counts'] = {y.unique()[0]: len(y)}
            return

        if len(y) == 1:
            self.leafs_cnt += 1
            node['type'] = 'leaf'
            node['class_counts'] = {y.values[0]: 1}
            return

        if depth >= self.max_depth or len(y) < self.min_samples_split or (self.leafs_cnt + 2 > self.max_leafs):
            self.leafs_cnt += 1
            node['type'] = 'leaf'
            node['class_counts'] = y.value_counts().to_dict()
            return

        if best_col is None:
            node['type'] = 'leaf'
            node['class_counts'] = y.value_counts().to_dict()
            self.leafs_cnt += 1
            return

        node['type'] = 'node'
        node['feature'] = best_col
        node['threshold'] = best_split_value

        left_mask = X[best_col] <= best_split_value
        right_mask = X[best_col] > best_split_value

        node['left'] = {}
        node['right'] = {}

        self.fit(X[left_mask], y[left_mask], depth + 1, node['left'])
        self.fit(X[right_mask], y[right_mask], depth + 1, node['right'])

    def bypass_tree(self, node, sample):
        while node['type'] == 'node':
            feature_value = sample[node['feature']]
            if feature_value <= node['threshold']:
                node = node['left']
            else:
                node = node['right']
    
        total_count = sum(node['class_counts'].values())
        class_1_count = node['class_counts'].get(1, 0)
        class1_proba = class_1_count / total_count if total_count > 0 else 0

        return class1_proba

    def predict_proba(self, X: pd.DataFrame):
        proba = []
        for _, sample in X.iterrows():
            class1_proba = self.bypass_tree(self.tree, sample)

            proba.append(class1_proba)
    
        return np.array(proba)

    def predict(self, X: pd.DataFrame):
        return [1 if p[0] > 0.5 else 0 for p in self.predict_proba(X)]

df = pd.read_csv('c:\\Users\\Nijat\\Downloads\\banknote+authentication.zip', header=None)
df.columns = ['variance', 'skewness', 'curtosis', 'entropy', 'target']
X, y = df.iloc[:, :4], df['target']

model = MyTreeClf(max_depth=3, min_samples_split=2, max_leafs=1)
model.fit(X, y)
print(model.predict(X))

The predict and predict_proba methods take a matrix of features in the form of a pandas dataframe. For each row from the dataframe:

  • Traverse the nodes of the tree up to one of the leaves.
  • Write the probability for the first class.
  • Return a list of predictions - as many as there are rows in the dataframe: predict_proba - returns probabilities (for the first class). predict - translates probabilities into binary classes by threshold > 0.5

Validation:

Input data: two sets of parameters for the decision tree

Output: returned predictions (their sum) of probabilities and labels

I exactly don't know about datasets that used for checking the code but I think that it's "Banknote authentication"

Sample input:

{"max_depth": 3, "min_samples_split": 2, "max_leafs": 1}

Sample output:

11.2443438914

Solution

  • Two points here:

    model = MyTreeClf(max_depth=3, min_samples_split=2, max_leafs=1)
    

    will trigger a return in the fit due to the max_leafs <2 condition putting it to two will allow the tree to be build

    i do not have your data set, so we'll test with a random one

    df = pd.DataFrame(columns=['variance', 'skewness', 'curtosis', 'entropy', 'target'],data=np.random.random(size=(500, 5)))
    df['target'] =df['target'].apply(lambda x: 0 if x<0.5 else 1)
    X, y = df.iloc[:, :4], df['target']
    

    and then, look at the tree of you model to see if it is built

    model = MyTreeClf(max_depth=3, min_samples_split=2, max_leafs=2)
    model.fit(X, y)
    print(model.tree)
    

    it gives us a tree and as such the node structure will work you can now run the model.predict_proba(X) which gives an array, hence the p is a value and not a list, you need to modify the function predict:

    def predict(self, X: pd.DataFrame):
        return [1 if p > 0.5 else 0 for p in self.predict_proba(X)]