Search code examples
rgisr-sfterra

Issue projecting polygon that crosses dateline R


I have a polygon in a North America equal area projection and I would like to transform to unprojected long/lat. I would like to use it to crop a global raster in unprojected longlat.

The problem is that it crosses the dateline, and returns a problematic polygon. Is there a way to instead return two polygons, one on either side of the dateline?

I'm also open to other suggestions.

Note: The raster I am aiming to crop is global at 1km resolution. So I am trying to avoid needing to project that raster, as that would be computationally heavy.

library(terra)
library(sf)
library(rnaturalearth)

ee <- ext(c(-4342031, 3457969, -3389091, 4710909))
ee <- as.polygons(ee, crs = "+proj=aea +lat_0=40 +lon_0=-96 +lat_1=20 +lat_2=60 +x_0=0 +y_0=0 +datum=NAD83 +units=m +no_defs")

ee <- st_transform(st_as_sf(ee), 4326)

world <- ne_coastline()
plot(world, lwd =0.5)
plot(ee, add=T)

enter image description here


Solution

  • There is a function called sf::st_break_antimeridian() that is great for this type of thing, however, it only works for non-projected coordinates (GCS).

    As your ee object is projected and becomes 'problematic' when converted to WGS84/EPSG:4326, a simple solution is to:

    • create a modified version of the WGS84/EPSG:4326 CRS, offsetting the central meridian to ensure the extent of your ee object does not cross the anti-meridian (in this example. 180 works).
    • use sf::st_break_antimeridian() to split/break ee at the anti-meridian
    • project back to the standard WGS84/EPSG:4326 CRS

    As your SpatRaster is high resolution, e.g. 1km cell size, you may need to crop() and mask() in two steps. When I tried in a single step, the values in the result were not correct.

    library(terra)
    library(sf)
    library(rnaturalearth)
    library(ggplot2)
    library(tidyterra)
    
    # CRS projection strings
    prj_aea <- "+proj=aea +lat_0=40 +lon_0=-96 +lat_1=20 +lat_2=60 +x_0=0 +y_0=0 +datum=NAD83 +units=m +no_defs"
    prj_wgs84_180 <- "+proj=longlat +datum=WGS84 +lon_0=180"
    
    # Create sf object, project to modified WGS84/EPSG:4326 CRS, split at anti-meridian,
    # project back to standard WGS84/EPSG:4326
    ee <- as.polygons(ext(c(-4342031, 3457969, -3389091, 4710909)), crs = prj_aea) |>
      st_as_sf() |>
      st_transform(prj_wgs84_180) |>
      st_break_antimeridian(lon_0 = 180) |>
      st_transform(4326)
    
    # Example SpatRaster with a global extent at approximately 1km resolution
    r <- rast(ext(-180, 180, -90, 90), res = 1000/111320, crs = "EPSG:4326")
    set.seed(1)
    r[] <- sample(1:5, ncell(r), replace = TRUE)
    
    # Crop, then mask r using ee
    r1 <- crop(r, ee)
    r1 <- mask(r1, ee)
    
    # Plot
    ggplot() +
      geom_spatraster(data = r1) +
      scale_fill_gradient2(low = "#0072B2",
                           mid = "#ffff6d", midpoint = 3,
                           high = "#C74A8F",
                           na.value = "transparent") +
      geom_sf(data = ne_coastline(), colour = "grey45", linewidth = 0.1) +
      coord_sf(expand = FALSE) +
      theme(panel.background = element_blank(),
            axis.title.y = element_blank(),
            axis.text.y = element_blank(),
            axis.ticks.y = element_blank())
    

    3

    Below is the original answer, practical only if your raster data are relatively low resolution

    library(terra)
    library(sf)
    library(rnaturalearth)
    library(ggplot2)
    
    # CRS projection strings
    prj_aea <- "+proj=aea +lat_0=40 +lon_0=-96 +lat_1=20 +lat_2=60 +x_0=0 +y_0=0 +datum=NAD83 +units=m +no_defs"
    prj_wgs84_180 <- "+proj=longlat +datum=WGS84 +lon_0=180"
     
    # Create sf object, project to modified WGS84 / EPSG:4326 CRS
    ee <- as.polygons(ext(c(-4342031, 3457969, -3389091, 4710909)), crs = prj_aea) |>
      st_as_sf() |>
      st_transform(prj_wgs84_180)
    
    # Create world sf, split at anti-meridian, project to modified WGS84 / EPSG:4326
    # Will throw a warning, which you can safely ignore
    world <- ne_coastline() |>
      st_break_antimeridian(lon_0 = 180) |>
      st_transform(prj_wgs84_180)
    
    ggplot() +
      geom_sf(data = world, colour = "grey") +
      geom_sf(data = ee, fill = NA, linewidth = 1) +
      theme_void()
    

    1

    Here is the workflow for cropping your raster. This assumes your raster is a SpatRaster with WGS84/EPSG:4326 as its CRS. Ensure the nrow and ncol values for the r1 object match the dimensions of your actual data.

    # Create example SpatRaster with global extent to represent your data
    r <- rast(ext(-180, 180, -90, 90), nrow = 180, ncol = 360, crs = "EPSG:4326")
    set.seed(1)
    r[] <- sample(1:5, ncell(r), replace = TRUE)
    
    # Project r to same CRS as ee
    r1 <- rast(ext(0, 360, -90, 90), nrow = 180, ncol = 360, crs = prj_wgs84_180)
    r1 <- project(r, r1)
    r1 <- rotate(r1, 180)
    
    # Crop r1 using ee, project back to standard WGS84/EPSG:4326
    r2 <- crop(r1, ee, mask = TRUE)
    r3 <- project(r2, r)
    

    Plot the results to compare:

    library(tidyterra)
    library(patchwork)
    
    p1 <- ggplot() +
      geom_spatraster(data = r2) +
      scale_fill_gradient2(low = "#0072B2", 
                           mid = "#ffff6d", midpoint = 3, 
                           high = "#C74A8F",
                          na.value = "transparent") +
      geom_sf(data = world, colour = "grey45", linewidth = 0.1) +
      labs(title = "Projected to custom CRS and cropped") +
      coord_sf(expand = FALSE) +
      theme(panel.background = element_blank(),
            axis.title.y = element_blank(),
            axis.text.y = element_blank(),
            axis.ticks.y = element_blank())
    
    p2 <- ggplot() +
      geom_spatraster(data = r3) +
      scale_fill_gradient2(low = "#0072B2", 
                           mid = "#ffff6d", midpoint = 3, 
                           high = "#C74A8F",
                           na.value = "transparent") +
      geom_sf(data = ne_coastline(), colour = "grey45", linewidth = 0.1) +
      labs(title = "Cropped data projected back to standard WGS84") +
      coord_sf(expand = FALSE) +
      theme(legend.position = "none",
            panel.background = element_blank(),
            axis.title.y = element_blank(),
            axis.text.y = element_blank(),
            axis.ticks.y = element_blank())
    
    p1 + p2
    

    2 Note that the above image is relatively low resolution, so if you zoom in, there are discrepancies in some of the like-for-like cell colours (particularly around the edges). This issue does not persist at 600dpi.