I have this code that generates a toy DataFrame (production df is much complex):
import polars as pl
import numpy as np
import pandas as pd
def create_timeseries_df(num_rows):
date_rng = pd.date_range(start='1/1/2020', end='1/01/2021', freq='T')
data = {
'date': np.random.choice(date_rng, num_rows),
'category': np.random.choice(['A', 'B', 'C', 'D'], num_rows),
'subcategory': np.random.choice(['X', 'Y', 'Z'], num_rows),
'value': np.random.rand(num_rows) * 100
}
df = pd.DataFrame(data)
df = df.sort_values('date')
df.set_index('date', inplace=True, drop=False)
df.index = pd.to_datetime(df.index)
return df
num_rows = 1000000 # for example
df = create_timeseries_df(num_rows)
Then perform this transformations with Pandas.
df_pd = df.copy()
df_pd = df_pd.groupby(['category', 'subcategory'])
df_pd = df_pd.resample('W-MON')
df_pd.agg({
'value': ['sum', 'mean', 'max', 'min']
}).reset_index()
But, obviously it is quite slow with Pandas (at least in production). Thus, I'd like to use Polars to speed up time. This is what I have so far:
#Convert to Polars DataFrame
df_pl = pl.from_pandas(df)
#Groupby, resample and aggregate
df_pl = df_pl.group_by('category', 'subcategory')
df_pl = df_pl.group_by_dynamic('date', every='1w', closed='right')
df_pl.agg(
pl.col('value').sum().alias('value_sum'),
pl.col('value').mean().alias('value_mean'),
pl.col('value').max().alias('value_max'),
pl.col('value').min().alias('value_min')
)
But I get AttributeError: 'GroupBy' object has no attribute 'group_by_dynamic'
. Any ideas on how to use groupby
followed by resample
in Polars?
You can pass additional columns to group by in a call to group_by_dynamic
by passing a list with the named argument group_by=
:
df_pl = df_pl.group_by_dynamic(
"date", every="1w", closed="right", group_by=["category", "subcategory"]
)
With this, I get a dataframe that looks similar to the one your pandas code produces:
shape: (636, 7)
┌──────────┬─────────────┬─────────────────────┬──────────────┬───────────┬───────────┬──────────┐
│ category ┆ subcategory ┆ date ┆ sum ┆ mean ┆ max ┆ min │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ datetime[ns] ┆ f64 ┆ f64 ┆ f64 ┆ f64 │
╞══════════╪═════════════╪═════════════════════╪══════════════╪═══════════╪═══════════╪══════════╡
│ D ┆ Z ┆ 2019-12-30 00:00:00 ┆ 55741.652346 ┆ 50.399324 ┆ 99.946595 ┆ 0.008139 │
│ D ┆ Z ┆ 2020-01-06 00:00:00 ┆ 76161.42206 ┆ 50.139185 ┆ 99.96917 ┆ 0.138366 │
│ D ┆ Z ┆ 2020-01-13 00:00:00 ┆ 80222.894298 ┆ 49.581517 ┆ 99.937069 ┆ 0.117216 │
│ D ┆ Z ┆ 2020-01-20 00:00:00 ┆ 82042.968995 ┆ 50.456931 ┆ 99.981101 ┆ 0.009077 │
│ D ┆ Z ┆ 2020-01-27 00:00:00 ┆ 82408.144078 ┆ 49.494381 ┆ 99.954734 ┆ 0.023769 │
│ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … │
│ B ┆ Z ┆ 2020-11-30 00:00:00 ┆ 79530.963748 ┆ 49.737939 ┆ 99.973554 ┆ 0.007446 │
│ B ┆ Z ┆ 2020-12-07 00:00:00 ┆ 80050.524653 ┆ 49.566888 ┆ 99.975546 ┆ 0.003066 │
│ B ┆ Z ┆ 2020-12-14 00:00:00 ┆ 77896.578291 ┆ 50.029915 ┆ 99.969098 ┆ 0.033222 │
│ B ┆ Z ┆ 2020-12-21 00:00:00 ┆ 76490.507942 ┆ 49.636929 ┆ 99.953563 ┆ 0.021683 │
│ B ┆ Z ┆ 2020-12-28 00:00:00 ┆ 46964.533378 ┆ 50.553857 ┆ 99.653981 ┆ 0.042546 │
└──────────┴─────────────┴─────────────────────┴──────────────┴───────────┴───────────┴──────────┘