I have a table like this:
┏━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ country ┃ city ┃ population ┃
┡━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ string │ string │ int64 │
├───────────────┼─────────────┼────────────┤
│ India │ Bangalore │ 8443675 │
│ India │ Delhi │ 11034555 │
│ India │ Mumbai │ 12442373 │
│ United States │ Los Angeles │ 3820914 │
│ United States │ New York │ 8258035 │
│ United States │ Chicago │ 2664452 │
│ China │ Shanghai │ 24281400 │
│ China │ Guangzhou │ 13858700 │
│ China │ Beijing │ 19164000 │
└───────────────┴─────────────┴────────────┘
I want to filter this table, returning only the most populous city in each country. So the result should look like this (order of rows does not matter):
┏━━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ country ┃ city ┃ population ┃
┡━━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━┩
│ string │ string │ int64 │
├───────────────┼──────────┼────────────┤
│ India │ Mumbai │ 12442373 │
│ United States │ New York │ 8258035 │
│ China │ Shanghai │ 24281400 │
└───────────────┴──────────┴────────────┘
With pandas, I can do it like this:
import pandas as pd
df = pd.DataFrame(data={'country': ['India', 'India', 'India', 'United States', 'United States', 'United States', 'China', 'China', 'China'],
'city': ['Bangalore', 'Delhi', 'Mumbai', 'Los Angeles', 'New York', 'Chicago', 'Shanghai', 'Guangzhou', 'Beijing'],
'population': [8443675, 11034555, 12442373, 3820914, 8258035, 2664452, 24281400, 13858700, 19164000]})
idx = df.groupby('country').population.idxmax()
df.loc[idx]
How do I do this with Ibis?
With Ibis, you can do it like this (run this code after the code in the question):
import ibis
from ibis import _
ibis.options.interactive = True
t = ibis.memtable(df)
(
t.mutate(row_num=ibis.row_number().over(group_by=_.country, order_by=_.population.desc()))
.filter(_.row_num==0)
.drop('row_num')
)
What this does:
row_num
that ranks the cities in each country by population (from largest to smallest).row_num
column.This uses Ibis's underscore API to simplify chaining.