Search code examples
pythonmachine-learninghuggingface-transformershuggingfacehalf-precision-float

I load a float32 Hugging Face model, cast it to float16, and save it. How can I load it as float16?


I load a huggingface-transformers float32 model, cast it to float16, and save it. How can I load it as float16?

Example:

# pip install transformers
from transformers import AutoModelForTokenClassification, AutoTokenizer

# Load model
model_path = 'huawei-noah/TinyBERT_General_4L_312D'
model = AutoModelForTokenClassification.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)

# Convert the model to FP16
model.half()

# Check model dtype
def print_model_layer_dtype(model):
    print('\nModel dtypes:')
    for name, param in model.named_parameters():
        print(f"Parameter: {name}, Data type: {param.dtype}")

print_model_layer_dtype(model)
save_directory = 'temp_model_SE'
model.save_pretrained(save_directory)

model2 = AutoModelForTokenClassification.from_pretrained(save_directory, local_files_only=True)
print('\n\n##################')
print(model2)
print_model_layer_dtype(model2)

In this example, model2 loads as a float32 model (as shown by print_model_layer_dtype(model2)), even though model2 was saved as float16 (as shown in config.json). What is the proper way to load it as float16?

Tested with transformers==4.36.2 and Python 3.11.7 on Windows 10.


Solution

  • Use torch_dtype='auto' in from_pretrained(). Example:

    model2 = AutoModelForTokenClassification.from_pretrained(save_directory, 
                                                             local_files_only=True,
                                                             torch_dtype='auto')
    

    Full example:

    # pip install transformers
    from transformers import AutoModelForTokenClassification, AutoTokenizer
    import torch
    
    # Load model
    model_path = 'huawei-noah/TinyBERT_General_4L_312D'
    model = AutoModelForTokenClassification.from_pretrained(model_path)
    tokenizer = AutoTokenizer.from_pretrained(model_path)
    
    # Convert the model to FP16
    model.half()
    
    # Check model dtype
    def print_model_layer_dtype(model):
        print('\nModel dtypes:')
        for name, param in model.named_parameters():
            print(f"Parameter: {name}, Data type: {param.dtype}")
    
    print_model_layer_dtype(model)
    save_directory = 'temp_model_SE'
    model.save_pretrained(save_directory)
    
    model2 = AutoModelForTokenClassification.from_pretrained(save_directory, local_files_only=True, torch_dtype='auto')
    print('\n\n##################')
    print(model2)
    print_model_layer_dtype(model2)
    

    It'll load model2 as torch.float16.