I'm trying to train a model with Yolov8. Everything was good but today I suddenly notice getting this warning apparently related to PyTorch
and cuDNN
. In spite the warning, the training seems to be progressing though. I'm not sure if it has any negative effects on the training progress.
site-packages/torch/autograd/graph.py:744: UserWarning: Plan failed with a cudnnException: CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR: cudnnFinalize Descriptor Failed cudnn_status: CUDNN_STATUS_NOT_SUPPORTED (Triggered internally at ../aten/src/ATen/native/cudnn/Conv_v8.cpp:919.)
return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
What is the problem and how to address this?
Here is the output of collect_env
:
Collecting environment information...
PyTorch version: 2.3.0+cu118
Is debug build: False
CUDA used to build PyTorch: 11.8
ROCM used to build PyTorch: N/A
OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
Clang version: Could not collect
CMake version: version 3.29.3
Libc version: glibc-2.31
Python version: 3.9.7 | packaged by conda-forge | (default, Sep 2 2021, 17:58:34) [GCC 9.4.0] (64-bit runtime)
Python platform: Linux-5.15.0-69-generic-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 11.8.89
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A100 80GB PCIe
Nvidia driver version: 515.105.01
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.8.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.8.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.8.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.8.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.8.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.8.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.8.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] onnx==1.16.0
[pip3] onnxruntime==1.17.3
[pip3] onnxruntime-gpu==1.17.1
[pip3] onnxsim==0.4.36
[pip3] optree==0.11.0
[pip3] torch==2.3.0+cu118
[pip3] torchaudio==2.3.0+cu118
[pip3] torchvision==0.18.0+cu118
[pip3] triton==2.3.0
[conda] numpy 1.24.4 pypi_0 pypi
[conda] pytorch-quantization 2.2.1 pypi_0 pypi
[conda] torch 2.1.1+cu118 pypi_0 pypi
[conda] torchaudio 2.1.1+cu118 pypi_0 pypi
[conda] torchmetrics 0.8.0 pypi_0 pypi
[conda] torchvision 0.16.1+cu118 pypi_0 pypi
[conda] triton 2.1.0 pypi_0 pypi
June 2024 Solution: Upgrade torch version to 2.3.1 to fix it:
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118