The screenshot shown is a Jupyter notebook running a Wolfram Engine kernel. There are two problems: a) The output cells are images, preventing copying to the clipboard. b) Some expressions within them appear hidden. For example, in cell [9], the condition is enclosed in a box with a "+" button, but it is not actionable. Is there a way to retrieve the full output in text format? The only workaround I've found is to peek in the source file.
debug.ipynb:
{
"cells": [
{
"cell_type": "code",
"execution_count": 14,
"id": "48f1dc25-9bc7-4a33-a9dd-b47480856414",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><img alt=\"Output\" src=\"\"></div>"
],
"text/plain": [
"b + a x\n",
"-------\n",
"d + c x"
]
},
"execution_count": 14,
"metadata": {
"text/html": [],
"text/plain": []
},
"output_type": "execute_result"
}
],
"source": [
"f[x]=(a*x+b)/(c*x+d)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "8ce9a0e1-f0ca-413f-8c9c-b2186e3bee40",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"<div><img alt=\"Output\" src=\"\"></div>"
],
"text/plain": [
" 2 2\n",
" a + 4 b c - 2 a d + d\n",
" Sqrt[-----------------------]\n",
" 2\n",
" a - d c\n",
"{{x -> ConditionalExpression[----- - -----------------------------, \n",
" 2 c 2\n",
" \n",
" 2 2 2 2\n",
" -a + 2 a d - d -a + 2 a d - d\n",
"> (b > ---------------- && c > 0) || (b < ---------------- && c < 0)]}, \n",
" 4 c 4 c\n",
" \n",
" 2 2\n",
" a + 4 b c - 2 a d + d\n",
" Sqrt[-----------------------]\n",
" 2\n",
" a - d c\n",
"> {x -> ConditionalExpression[----- + -----------------------------, \n",
" 2 c 2\n",
" \n",
" 2 2 2 2\n",
" -a + 2 a d - d -a + 2 a d - d\n",
"> (b > ---------------- && c > 0) || (b < ---------------- && c < 0)]}}\n",
" 4 c 4 c"
]
},
"execution_count": 15,
"metadata": {
"text/html": [],
"text/plain": []
},
"output_type": "execute_result"
}
],
"source": [
"sol=Solve[f[x]==x,x,Reals]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4166ccbd-3e65-4817-babc-0fd220712ba7",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Wolfram Language 14",
"language": "Wolfram Language",
"name": "wolframlanguage14"
},
"language_info": {
"codemirror_mode": "mathematica",
"file_extension": ".m",
"mimetype": "application/vnd.wolfram.m",
"name": "Wolfram Language",
"pygments_lexer": "mathematica",
"version": "12.0"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
terminal:
$ jupyter --version
Selected Jupyter core packages...
IPython : 8.22.2
ipykernel : 6.29.4
ipywidgets : 8.1.2
jupyter_client : 8.6.1
jupyter_core : 5.7.2
jupyter_server : 2.13.0
jupyterlab : 4.1.6
nbclient : 0.10.0
nbconvert : 7.16.3
nbformat : 5.10.4
notebook : 7.1.2
qtconsole : not installed
traitlets : 5.14.2
$ uname -a
Linux elitebook 6.8.4-arch1-1 #1 SMP PREEMPT_DYNAMIC Fri, 05 Apr 2024 00:14:23 +0000 x86_64 GNU/Linux
Also see:
To obtain copy-compatible output cells within Jupyter using the Wolfram Engine as the kernel, wrap expressions with either of ToString
, OutputForm
, or InputForm
. This can be done globally using $PrePrint = InputForm
.
Source: