Search code examples
jupyter-notebookwolfram-mathematica

How to convert output cells to text within Jupyter?


The screenshot shown is a Jupyter notebook running a Wolfram Engine kernel. There are two problems: a) The output cells are images, preventing copying to the clipboard. b) Some expressions within them appear hidden. For example, in cell [9], the condition is enclosed in a box with a "+" button, but it is not actionable. Is there a way to retrieve the full output in text format? The only workaround I've found is to peek in the source file.

enter image description here

debug.ipynb:

    {
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "48f1dc25-9bc7-4a33-a9dd-b47480856414",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div><img alt=\"Output\" src=\"\"></div>"
      ],
      "text/plain": [
       "b + a x\n",
       "-------\n",
       "d + c x"
      ]
     },
     "execution_count": 14,
     "metadata": {
      "text/html": [],
      "text/plain": []
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "f[x]=(a*x+b)/(c*x+d)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "8ce9a0e1-f0ca-413f-8c9c-b2186e3bee40",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div><img alt=\"Output\" src=\"\"></div>"
      ],
      "text/plain": [
       "                                           2                    2\n",
       "                                          a  + 4 b c - 2 a d + d\n",
       "                                     Sqrt[-----------------------]\n",
       "                                                     2\n",
       "                             a - d                  c\n",
       "{{x -> ConditionalExpression[----- - -----------------------------, \n",
       "                              2 c                  2\n",
       " \n",
       "              2            2                     2            2\n",
       "            -a  + 2 a d - d                    -a  + 2 a d - d\n",
       ">      (b > ---------------- && c > 0) || (b < ---------------- && c < 0)]}, \n",
       "                  4 c                                4 c\n",
       " \n",
       "                                              2                    2\n",
       "                                             a  + 4 b c - 2 a d + d\n",
       "                                        Sqrt[-----------------------]\n",
       "                                                        2\n",
       "                                a - d                  c\n",
       ">   {x -> ConditionalExpression[----- + -----------------------------, \n",
       "                                 2 c                  2\n",
       " \n",
       "              2            2                     2            2\n",
       "            -a  + 2 a d - d                    -a  + 2 a d - d\n",
       ">      (b > ---------------- && c > 0) || (b < ---------------- && c < 0)]}}\n",
       "                  4 c                                4 c"
      ]
     },
     "execution_count": 15,
     "metadata": {
      "text/html": [],
      "text/plain": []
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "sol=Solve[f[x]==x,x,Reals]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4166ccbd-3e65-4817-babc-0fd220712ba7",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Wolfram Language 14",
   "language": "Wolfram Language",
   "name": "wolframlanguage14"
  },
  "language_info": {
   "codemirror_mode": "mathematica",
   "file_extension": ".m",
   "mimetype": "application/vnd.wolfram.m",
   "name": "Wolfram Language",
   "pygments_lexer": "mathematica",
   "version": "12.0"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}

terminal:

$ jupyter --version
Selected Jupyter core packages...
IPython          : 8.22.2
ipykernel        : 6.29.4
ipywidgets       : 8.1.2
jupyter_client   : 8.6.1
jupyter_core     : 5.7.2
jupyter_server   : 2.13.0
jupyterlab       : 4.1.6
nbclient         : 0.10.0
nbconvert        : 7.16.3
nbformat         : 5.10.4
notebook         : 7.1.2
qtconsole        : not installed
traitlets        : 5.14.2
$ uname -a
Linux elitebook 6.8.4-arch1-1 #1 SMP PREEMPT_DYNAMIC Fri, 05 Apr 2024 00:14:23 +0000 x86_64 GNU/Linux

Also see:


Solution

  • To obtain copy-compatible output cells within Jupyter using the Wolfram Engine as the kernel, wrap expressions with either of ToString, OutputForm, or InputForm. This can be done globally using $PrePrint = InputForm.

    enter image description here

    Source: