I've got a 3D datafile with highly oscillating data (already sorted with zsort :),
0 51 0.2
0 58 0.3
0 60 0.3
0 60.1 0.4
0 61 0.4
0 62 0.5
0 63 0.4
0 63.1 0.5
0 64 0.1
0 64.1 0.3
0 65 0.2
0 68 0.5
0 69 0.5
0 70 0.5
0 72 0.2
0 72.1 0.3
0 73 0.3
0 73.1 0.1
0 73.2 0.3
0 74 0.3
0 74.1 0.3
0 75 0.1
0 75.1 0.9
0 76 0.2
0 76.1 0.7
0 76.2 0.9
0 77 0.4
0 79 0.2
0 81 0.1
0 81.1 0.2
0 81.2 0.2
0 81.3 0.2
0 81.4 0.1
0 83 0.1
0 83.1 0.3
0 84 0.4
0.1 41 0.3
0.1 46 0.5
0.1 47 0.1
0.1 53 0.3
0.1 53.1 0.5
0.1 57 0.5
0.1 59 0.3
0.1 61 0.3
0.1 61.1 0.1
0.1 61.2 -0.1
0.1 62 0.3
0.1 62.1 0.1
0.1 62.2 0.1
0.1 63 -0.3
0.1 64 0.2
0.1 64.1 0.6
0.1 64.2 -0.1
0.1 65 0.2
0.1 65.1 0.1
0.1 65.2 0.8
0.1 65.3 0.9
0.1 67 0.4
0.1 68 0.3
0.1 69 0.2
0.1 70 0.3
0.1 70.1 0.1
0.1 71 0.1
0.1 71.1 0.1
0.1 72 0.2
0.1 73 0.2
0.1 73.1 0
0.1 73.2 0.6
0.1 73.3 0.3
0.1 73.4 0.2
0.1 75 0.4
0.1 78 0.8
0.1 78.1 0.2
0.1 78.2 0.8
0.1 79 0.5
0.1 79.1 0.4
0.1 82 0
0.1 83 0.5
0.2 34 0.2
0.2 39 0.6
0.2 42 0.5
0.2 43 0.6
0.2 49 0.4
0.2 49.1 0.4
0.2 50 0.7
0.2 54 0.4
0.2 54.1 0.6
0.2 58 0.4
0.2 58.1 0.1
0.2 59 0
0.2 60 0.6
0.2 63 0.2
0.2 63.1 0.5
0.2 63.2 0.3
0.2 64 -0.2
0.2 64.1 0
0.2 67 0.5
0.2 69 0.5
0.2 69.1 0.3
0.2 71 0.2
0.2 71.1 0
0.2 71.2 0.1
0.2 72 -0.1
0.2 72.1 0.2
0.2 74 -0.1
0.2 75 0.2
0.2 76 0.2
0.2 77 0.4
0.2 79 0.2
0.2 79.1 0.2
0.2 81 0.2
0.2 81.1 0.3
0.3 35 0.1
0.3 37 0.2
0.3 41 0.8
0.3 46 0.4
0.3 51 0.7
0.3 53 0.7
0.3 54 0.2
0.3 57 0.1
0.3 58 0.6
0.3 59 0.5
0.3 61 0.3
0.3 61.1 0.1
0.3 62 0.5
0.3 62.1 0.8
0.3 62.2 0.3
0.3 63 0.3
0.3 63.1 0.3
0.3 64 0.8
0.3 64.1 0.3
0.3 64.2 0.4
0.3 69 0.6
0.3 70 0.3
0.3 72 0.1
0.3 74 0
0.3 76 0.3
0.3 76.1 0.1
0.3 79 0.3
0.3 80 0.1
0.3 80.1 0.1
0.3 81 0.3
0.3 81.1 0.2
0.3 83 0
0.4 34 0.6
0.4 34.1 0.5
0.4 36 0.2
0.4 39 0.6
0.4 41 -0.1
0.4 42 0.3
0.4 43 0.5
0.4 48 0.7
0.4 49 0.6
0.4 52 0.8
0.4 52.1 0.1
0.4 54 0.7
0.4 58 0.8
0.4 60 0
0.4 61 0.1
0.4 63 -0.1
0.4 63.1 0
0.4 66 0.7
0.4 67 0.2
0.4 67.1 0.3
0.4 70 0.4
0.4 70.1 0.3
0.4 71 0.1
0.4 74 0.2
0.5 33 0.6
0.5 34 0.1
0.5 35 0.3
0.5 46 0.1
0.5 47 0.4
0.5 53 0.8
0.5 55 0.3
0.5 58 0.1
0.5 59 0.2
0.5 59.1 0.1
0.5 60 0.8
0.5 60.1 -0.1
0.5 61 0.4
0.5 61.1 0.3
0.5 62 0.2
0.5 63 0
0.5 64 0.2
0.5 67 0.2
0.5 68 0.2
0.5 69 0.2
0.5 70 0.1
0.5 72 0.1
0.5 73 0.1
0.5 76 0.3
0.5 76.1 0.2
0.5 79 0.2
0.5 79.1 0.2
0.5 80 0.8
0.5 84 0.1
0.5 84.1 0.4
0.6 20 0.7
0.6 22 0.8
0.6 30 0.4
0.6 30.1 0.7
0.6 31 0.6
0.6 35 0.9
0.6 35.1 0.9
0.6 37 0.5
0.6 38 0.2
0.6 39 0.6
0.6 42 0.3
0.6 43 0.3
0.6 46 1
0.6 47 0.6
0.6 49 0.2
0.6 49.1 0.1
0.6 51 0.9
0.6 51.1 0.2
0.6 54 0.9
0.6 55 1.1
0.6 59 0.6
0.6 61 0.6
0.6 62 0.6
0.6 62.1 0.6
0.6 62.2 0.1
0.6 64 0.9
0.6 65 0.2
0.6 65.1 0.5
0.6 66 0.2
0.6 75 0.4
0.6 81 0.1
0.6 81.1 0.1
0.6 81.2 0.7
0.6 83 0.5
0.7 23 0.4
0.7 24 0.9
0.7 26 1.1
0.7 27 0.7
0.7 33 0.7
0.7 33.1 0
0.7 34 0.3
0.7 36 0.1
0.7 37 0.9
0.7 37.1 0.6
0.7 40 0.5
0.7 46 0.1
0.7 46.1 0.8
0.7 46.2 0.5
0.7 48 0.7
0.7 49 0.5
0.7 50 0.9
0.7 51 0.8
0.7 52 0.8
0.7 52.1 0.5
0.7 54 0.2
0.7 54.1 0
0.7 55 0.9
0.7 56 0.6
0.7 56.1 0.6
0.7 56.2 0.8
0.7 56.3 0.1
0.7 57 0.4
0.7 58 0
0.7 59 1
0.7 59.1 0
0.7 60 0.1
0.7 62 0.2
0.7 68 0.1
0.7 68.1 0.2
0.7 71 0.4
0.7 71.1 0.5
0.7 72 0.2
0.7 77 0.2
0.7 81 0.2
0.7 83 0.1
0.8 21 1
0.8 28 0.9
0.8 28.1 0.1
0.8 29 0.8
0.8 32 0.1
0.8 34 1.1
0.8 37 0.1
0.8 38 0
0.8 39 0.7
0.8 45 0.2
0.8 47 0.1
0.8 47.1 0.3
0.8 47.2 0.7
0.8 48 0.2
0.8 50 0.2
0.8 50.1 0.8
0.8 52 0.2
0.8 52.1 0.2
0.8 54 0.2
0.8 58 1
0.8 60 0.2
0.8 62 0.5
0.8 64 0.2
0.8 64.1 0.2
0.8 65 0.6
0.8 65.1 0.2
0.8 65.2 0.2
0.8 65.3 0.3
0.8 66 0
0.8 68 0.4
0.8 71 0
0.8 71.1 0.4
0.8 73 0.3
0.8 76 0.3
0.8 77 0.2
0.8 77.1 0.1
0.8 77.2 0.1
0.8 78 0.3
0.8 81 0.2
0.8 81.1 0.3
0.8 84 0.2
0.9 21 0.9
0.9 21.1 1.1
0.9 22 0.8
0.9 24 0.4
0.9 26 0.9
0.9 29 0.7
0.9 32 0.9
0.9 32.1 0.7
0.9 35 0.7
0.9 36 1.4
0.9 38 0
0.9 41 0
0.9 43 1
0.9 44 0.7
0.9 54 0.2
0.9 56 0.7
0.9 57 1.2
0.9 60 0.3
0.9 60.1 1
0.9 61 0.2
0.9 62 1.1
0.9 62.1 0.3
0.9 62.2 0.4
0.9 64 0.3
0.9 64.1 0.2
0.9 67 0.2
0.9 70 0.2
0.9 70.1 0.5
0.9 72 0.3
0.9 76 0.2
0.9 77 0.1
0.9 78 0.1
0.9 78.1 0.3
0.9 80 0
0.9 80.1 0.3
1 24 0.3
1 25 0.7
1 30 0.6
1 30.1 0.9
1 34 0.9
1 34.1 0.7
1 35 0.9
1 36 0.6
1 37 0.2
1 38 0.6
1 39 1
1 40 0
1 40.1 1
1 43 0.6
1 48 0.5
1 48.1 1.1
1 50 0.1
1 51 0.8
1 52 1.1
1 53 0.1
1 54 0.4
1 55 0.1
1 58 0.2
1 60 0.2
1 60.1 0.3
1 61 0
1 61.1 0.9
1 62 0.1
1 64 0.4
1 65 0.2
1 66 0.3
1 68 0.5
1 69 0.9
1 70 1.5
1 71 0
1 72 0.1
1 72.1 0.2
1 73 0.2
1 73.1 1.1
1 73.2 0.2
1 74 0.2
1 74.1 0.3
1 76 0.2
1 77 0.4
1 77.1 0.2
1 77.2 0.2
1 81 0.5
1 85 0.4
1.1 22 1.2
1.1 23 0.7
1.1 23.1 0.5
1.1 24 0.7
1.1 24.1 0.8
1.1 26 0.9
1.1 26.1 1.2
1.1 33 1.3
1.1 34 1.2
1.1 36 0.7
1.1 40 0.6
1.1 42 0
1.1 46 0.4
1.1 48 0.2
1.1 49 0.1
1.1 52 0.1
1.1 55 0.2
1.1 57 1.2
1.1 59 1.4
1.1 60 1.5
1.1 60.1 0
1.1 61 0.1
1.1 61.1 -0.1
1.1 61.2 1
1.1 62 0.2
1.1 64 0.1
1.1 64.1 0.2
1.1 64.2 0.2
1.1 64.3 0.1
1.1 65 0.7
1.1 65.1 0.4
1.1 66 0.9
1.1 66.1 0.3
1.1 66.2 0.2
1.1 67 0.2
1.1 67.1 0.1
1.1 68 0.4
1.1 71 0.5
1.1 71.1 0.1
1.1 71.2 0.2
1.1 75 0.2
1.1 76 0.3
1.1 76.1 0.4
1.1 77 0.3
1.1 77.1 0.4
1.1 79 0.2
1.2 22 1.2
1.2 22.1 0.9
1.2 23 1.3
1.2 28 0
1.2 30 0.8
1.2 32 0
1.2 33 0.8
1.2 33.1 0.5
1.2 35 0.8
1.2 35.1 1.1
1.2 38 0.1
1.2 38.1 0.1
1.2 39 1
1.2 39.1 0.7
1.2 39.2 0.8
1.2 40 0.3
1.2 42 1
1.2 43 1.5
1.2 44 0
1.2 47 0.5
1.2 47.1 0.6
1.2 47.2 0.4
1.2 47.3 0.2
1.2 49 0
1.2 49.1 0.2
1.2 50 0
1.2 50.1 0
1.2 53 0.1
1.2 53.1 1.2
1.2 58 0.3
1.2 58.1 0
1.2 60 0.7
1.2 63 0.1
1.2 63.1 0.3
1.2 65 0.2
1.2 65.1 -0.1
1.2 66 0.4
1.2 66.1 0.1
1.2 66.2 0.2
1.2 67 0.2
1.2 67.1 0.3
1.2 69 0.1
1.2 70 0.2
1.2 70.1 0
1.2 71 0.2
1.2 75 0.1
1.2 78 0.1
1.2 80 0.3
1.2 81 0
1.2 81.1 0.2
1.2 81.2 0.4
1.2 82 0.3
1.2 82.1 0.1
1.2 83 0.1
1.3 18 0.6
1.3 22 0.6
1.3 22.1 0.8
1.3 22.2 0.6
1.3 24 0.3
1.3 24.1 1
1.3 29 0.6
1.3 30 1.2
1.3 32 1.1
1.3 34 0.9
1.3 37 0.3
1.3 37.1 0.9
1.3 38 0.2
1.3 41 1.4
1.3 45 -0.1
1.3 45.1 1.1
1.3 45.2 1.1
1.3 47 0.1
1.3 52 0.5
1.3 59 0.1
1.3 59.1 0.2
1.3 60 0.2
1.3 61 0.9
1.3 62 0.2
1.3 63 0.1
1.3 64 0
1.3 65 1.1
1.3 67 0.1
1.3 67.1 0.2
1.3 68 0.3
1.3 68.1 0.1
1.3 69 1.2
1.3 71 0.6
1.3 72 0.2
1.3 73 0.2
1.3 73.1 0.3
1.3 74 0.1
1.3 75 1.2
1.3 77 0.3
1.3 78 0.2
1.3 79 0.2
1.3 84 0.2
1.4 21 1.3
1.4 21.1 0.8
1.4 22 0.7
1.4 23 1.3
1.4 28 0.5
1.4 29 0.9
1.4 31 1.3
1.4 33 0.6
1.4 35 0.1
1.4 38 0.2
1.4 41 0.1
1.4 44 0.5
1.4 46 0.2
1.4 47 0.1
1.4 50 0.3
1.4 51 0
1.4 53 0.2
1.4 53.1 0.2
1.4 54 0.1
1.4 55 0.8
1.4 57 0.2
1.4 59 0.3
1.4 59.1 0.2
1.4 62 0.6
1.4 63 1.2
1.4 64 0.5
1.4 65 0
1.4 66 0.2
1.4 67 0.5
1.4 67.1 1.2
1.4 69 0.6
1.4 69.1 0.1
1.4 71 0.3
1.4 71.1 0.1
1.4 73 0.1
1.4 74 0.3
1.4 74.1 0.4
1.4 75 0.2
1.4 75.1 0.3
1.4 75.2 0.2
1.4 75.3 0.2
1.4 77 0.2
1.4 77.1 0.3
1.4 78 0.2
1.4 78.1 0.3
1.4 81 0.2
1.4 83 0
1.4 85 0.3
1.5 20 0.6
1.5 21 0.7
1.5 21.1 1.1
1.5 23 1.3
1.5 26 0.9
1.5 28 0.9
1.5 32 1.2
1.5 32.1 1.8
1.5 33 0.3
1.5 36 0.1
1.5 38 0.1
1.5 38.1 0.1
1.5 43 0.2
1.5 43.1 0
1.5 44 0.5
1.5 44.1 0.2
1.5 44.2 0.3
1.5 44.3 0.1
1.5 47 0.2
1.5 49 0.1
1.5 52 0.1
1.5 53 0.1
1.5 54 0.1
1.5 55 0.2
1.5 56 0.3
1.5 57 0.1
1.5 58 0.2
1.5 59 1.2
1.5 61 0.3
1.5 62 0.2
1.5 62.1 0.3
1.5 64 0.5
1.5 65 0.1
1.5 65.1 0.2
1.5 65.2 0.4
1.5 65.3 0.3
1.5 66 1
1.5 67 0.3
1.5 69 0.3
1.5 69.1 -0.1
1.5 70 0.3
1.5 74 0.3
1.5 74.1 0.4
1.5 74.2 0.2
1.5 74.3 0.3
1.5 76 0.4
1.5 77 0.1
1.5 79 0.2
1.5 80 0.4
1.5 83 0.1
1.6 19 1
1.6 22 0.9
1.6 23 1
1.6 24 1.2
1.6 26 0.7
1.6 29 0.9
1.6 29.1 0.9
1.6 30 0.1
1.6 30.1 1.5
1.6 32 1
1.6 33 1
1.6 42 0.8
1.6 43 0.2
1.6 43.1 1.1
1.6 44 0.1
1.6 48 1.2
1.6 49 1.1
1.6 50 -0.1
1.6 54 0.2
1.6 54.1 -0.1
1.6 56 1.3
1.6 57 0
1.6 58 0.3
1.6 59 0.2
1.6 59.1 0.3
1.6 61 0.2
1.6 62 0
1.6 62.1 1.2
1.6 65 0.1
1.6 65.1 0.8
1.6 65.2 0.1
1.6 66 0.2
1.6 67 0.1
1.6 68 0.2
1.6 69 0.1
1.6 70 0.1
1.6 71 0.4
1.6 71.1 0
1.6 71.2 0.2
1.6 76 1.1
1.6 83 0.2
1.6 84 0.4
1.7 19 1
1.7 24 0.9
1.7 24.1 1.2
1.7 25 0.5
1.7 26 0.2
1.7 26.1 0.9
1.7 28 0.8
1.7 32 0.7
1.7 33 1.1
1.7 38 0.7
1.7 40 0.1
1.7 41 0.2
1.7 41.1 1.2
1.7 42 0.8
1.7 45 0.4
1.7 46 0.1
1.7 47 0.6
1.7 53 0.1
1.7 54 0.2
1.7 54.1 1.3
1.7 56 0.1
1.7 61 0.1
1.7 62 0.3
1.7 62.1 1.2
1.7 62.2 0.6
1.7 63 1.3
1.7 63.1 1.3
1.7 65 -0.5
1.7 65.1 0.1
1.7 65.2 0.1
1.7 66 0.2
1.7 66.1 0.2
1.7 67 0.2
1.7 68 0.1
1.7 69 0.6
1.7 71 0.2
1.7 72 0.9
1.7 74 0.5
1.7 76 0.5
1.7 76.1 0.1
1.7 78 0.8
1.7 80 0.3
1.7 82 0.1
1.8 21 0.7
1.8 22 1.2
1.8 22.1 0.8
1.8 23 1.4
1.8 23.1 0.6
1.8 26 0.9
1.8 30 0.1
1.8 31 0.1
1.8 32 0.9
1.8 35 0.3
1.8 39 1.2
1.8 41 0.2
1.8 42 0.2
1.8 42.1 0.2
1.8 45 0
1.8 45.1 0.1
1.8 45.2 -0.1
1.8 48 0.7
1.8 56 0.6
1.8 56.1 0.5
1.8 57 0.1
1.8 57.1 0.2
1.8 58 0
1.8 59 0.2
1.8 59.1 0.1
1.8 59.2 0.9
1.8 60 0.3
1.8 60.1 0.1
1.8 60.2 0.2
1.8 61 -0.1
1.8 63 0.2
1.8 64 0.1
1.8 65 0.2
1.8 65.1 0.2
1.8 65.2 0.2
1.8 66 0.2
1.8 66.1 0.6
1.8 66.2 0.2
1.8 66.3 0.1
1.8 66.4 0.2
1.8 67 0.2
1.8 68 0.1
1.8 68.1 0.1
1.8 70 0.2
1.8 70.1 0
1.8 71 0.1
1.8 71.1 0.1
1.8 72 0.1
1.8 72.1 0.3
1.8 75 0.2
1.8 75.1 0.3
1.8 77 0.4
1.8 79 0.4
1.8 83 0.1
1.9 20 0.7
1.9 23 1.5
1.9 30 0.8
1.9 31 0.9
1.9 34 0.2
1.9 36 0.1
1.9 38 0.5
1.9 38.1 1.1
1.9 39 0.3
1.9 40 0
1.9 41 0.6
1.9 44 1.3
1.9 45 0.1
1.9 46 0.3
1.9 47 0.1
1.9 50 0.2
1.9 50.1 0.5
1.9 53 0.4
1.9 53.1 1.1
1.9 54 0.2
1.9 58 0.9
1.9 58.1 0.2
1.9 58.2 0.2
1.9 59 0.3
1.9 59.1 0.1
1.9 61 0.1
1.9 62 0.3
1.9 62.1 0.3
1.9 63 0.1
1.9 66 0.2
1.9 67 0.4
1.9 68 0.1
1.9 70 0.2
1.9 70.1 0.3
1.9 70.2 0.2
1.9 70.3 0.1
1.9 72 0.2
1.9 72.1 0.2
1.9 73 0.1
1.9 74 0.3
1.9 74.1 0.3
1.9 75 0.8
1.9 83 0
1.9 84 0.4
1.9 85 0.3
2 20 1
2 27 0.4
2 29 1.4
2 31 0.8
2 32 1
2 32.1 0.3
2 33 0.3
2 36 1.2
2 36.1 0.1
2 37 0.1
2 38 0.2
2 39 0.5
2 40 0.6
2 40.1 1.5
2 43 -0.1
2 44 0.2
2 45 0.2
2 46 -0.1
2 52 0.1
2 55 0.5
2 56 0.5
2 57 0.2
2 58 1.1
2 58.1 0.3
2 59 0.4
2 62 0.4
2 62.1 0
2 63 0.2
2 63.1 0.7
2 64 0.3
2 65 0.1
2 65.1 0.1
2 66 0.2
2 68 0.2
2 69 1.2
2 69.1 0.1
2 71 0.1
2 71.1 0.3
2 71.2 0.1
2 72 0.2
2 74 0.2
2 74.1 1.2
2 74.2 0.4
2 74.3 0.2
2 77 0.1
2 80 0.2
2 80.1 0.1
2 81 0.1
2.1 21 0.8
2.1 21.1 0.9
2.1 25 0.9
2.1 27 0.9
2.1 28 0.9
2.1 29 1.2
2.1 30 0.9
2.1 30.1 0.4
2.1 32 0.8
2.1 33 0.8
2.1 34 0.2
2.1 34.1 0.1
2.1 40 0.6
2.1 40.1 0.3
2.1 42 1
2.1 43 1.2
2.1 43.1 1.2
2.1 44 0.2
2.1 47 0.2
2.1 49 0.2
2.1 52 0.4
2.1 53 1.3
2.1 53.1 0.4
2.1 53.2 0.3
2.1 55 0.1
2.1 56 0.1
2.1 58 0.4
2.1 59 0.2
2.1 60 0.1
2.1 65 0.2
2.1 66 0.3
2.1 66.1 0.2
2.1 66.2 0.3
2.1 67 0.3
2.1 68 0.1
2.1 68.1 0.4
2.1 69 0.4
2.1 70 0.9
2.1 70.1 0.3
2.1 70.2 -0.1
2.1 73 0
2.1 73.1 0.3
2.1 73.2 0.3
2.1 73.3 0.1
2.1 74 0.1
2.1 75 0.2
2.1 76 0.5
2.1 76.1 0.2
2.1 78 0.4
2.1 79 0.4
2.1 79.1 0.4
2.1 80 0.2
2.2 18 0.7
2.2 21 0.9
2.2 29 0.7
2.2 29.1 1.1
2.2 31 0.1
2.2 32 0.1
2.2 33 0.3
2.2 36 0
2.2 36.1 1.1
2.2 37 0.9
2.2 41 0.8
2.2 41.1 1.5
2.2 42 0.1
2.2 44 0.1
2.2 45 1
2.2 48 0.3
2.2 54 0.2
2.2 54.1 1
2.2 55 0.2
2.2 56 0.1
2.2 56.1 0.1
2.2 61 0
2.2 64 0.2
2.2 64.1 0.2
2.2 65 0.1
2.2 66 0.2
2.2 66.1 0.2
2.2 67 0.2
2.2 68 0.1
2.2 68.1 0.1
2.2 69 0.1
2.2 69.1 0.3
2.2 71 0.2
2.2 72 0.2
2.2 73 0.5
2.2 73.1 0.2
2.2 74 0.3
2.2 75 0.9
2.3 19 0.7
2.3 37 0.9
2.3 37.1 0.1
2.3 37.2 0.2
2.3 40 0.2
2.3 41 0.1
2.3 42 1.2
2.3 44 0.2
2.3 45 0.6
2.3 46 0.2
2.3 46.1 0.2
2.3 47 0.5
2.3 49 0.4
2.3 50 0.1
2.3 50.1 0.3
2.3 54 0.1
2.3 54.1 0.1
2.3 55 -0.1
2.3 56 0.2
2.3 56.1 0.9
2.3 56.2 0.2
2.3 57 0.7
2.3 57.1 1.4
2.3 60 0.3
2.3 61 0.3
2.3 62 0.2
2.3 64 0.1
2.3 64.1 0.3
2.3 65 0.2
2.3 66 0.2
2.3 67 0.3
2.3 67.1 0.2
2.3 68 0.5
2.3 71 0.3
2.3 71.1 0.3
2.3 73 0.2
2.3 74 0.2
2.3 74.1 0.2
2.4 22 1.6
2.4 27 0.7
2.4 27.1 1
2.4 27.2 0.1
2.4 30 0.1
2.4 37 0.1
2.4 38 0.7
2.4 40 0.2
2.4 41 0.2
2.4 42 0.2
2.4 47 1.7
2.4 51 -0.2
2.4 52 0.1
2.4 54 0.2
2.4 54.1 0.1
2.4 54.2 0
2.4 54.3 0.2
2.4 55 0.5
2.4 55.1 0.1
2.4 57 0.2
2.4 58 0.2
2.4 59 0.2
2.4 63 0.1
2.4 64 0.2
2.4 65 0.2
2.4 66 0.2
2.4 66.1 0.2
2.4 66.2 0.5
2.4 67 0.1
2.4 67.1 0.2
2.4 68 0.3
2.4 70 0.3
2.4 71 0.1
2.4 75 0.4
2.4 75.1 0
2.5 23 0.7
2.5 26 0.1
2.5 27 1
2.5 29 0.8
2.5 30 0.4
2.5 31 0.5
2.5 32 0.9
2.5 33 1.1
2.5 34 1.1
2.5 41 1
2.5 42 0.1
2.5 45 0.1
2.5 45.1 1.3
2.5 45.2 0.7
2.5 46 0.1
2.5 48 1.3
2.5 48.1 0.5
2.5 48.2 0.5
2.5 49 1
2.5 58 0.2
2.5 58.1 0.1
2.5 61 0.2
2.5 61.1 0.1
2.5 63 0.2
2.5 63.1 0.2
2.5 64 0.2
2.5 65 0.4
2.5 66 0.2
2.5 66.1 0.2
2.5 67 0.2
2.5 70 0.3
2.5 70.1 0.4
2.5 70.2 0.2
2.5 70.3 0.2
2.5 70.4 0.3
2.5 70.5 0.6
2.5 73 0.2
2.5 73.1 0.1
2.5 73.2 0.3
2.5 75 0.2
2.6 22 1
2.6 24 0.8
2.6 29 0.5
2.6 31 0.3
2.6 31.1 0.5
2.6 38 0.7
2.6 38.1 0.1
2.6 42 0.2
2.6 43 0.2
2.6 45 0.1
2.6 54 0.4
2.6 54.1 0.2
2.6 60 0
2.6 60.1 0.4
2.6 61 0.2
2.6 67 0.1
2.6 68 0.4
2.6 70 1.2
2.6 70.1 0.1
2.6 72 0.1
2.6 75 0.2
2.6 79 0.1
2.7 27 0.7
2.7 27.1 0.8
2.7 30 0.3
2.7 33 1
2.7 33.1 -0.2
2.7 38 0.9
2.7 42 0.7
2.7 42.1 0.7
2.7 48 1
2.7 48.1 0
2.7 49 0.9
2.7 53 0.1
2.7 55 0.4
2.7 55.1 0.2
2.7 56 0.1
2.7 58 0.3
2.7 60 0.2
2.7 61 0.5
2.7 62 0.2
2.7 64 0.8
2.7 66 0.1
2.7 68 0.2
2.7 69 0.2
2.7 69.1 0.3
2.7 72 0.3
2.7 72.1 0.3
2.7 73 0.3
2.7 74 0.2
2.7 75 0.1
2.8 17 0.6
2.8 23 0.4
2.8 24 0.6
2.8 27 1.6
2.8 28 0.6
2.8 29 0.6
2.8 31 0.9
2.8 32 0.9
2.8 36 0.5
2.8 38 0.1
2.8 40 0.6
2.8 40.1 0.5
2.8 53 0.4
2.8 54 0.1
2.8 54.1 0.2
2.8 56 0.2
2.8 56.1 0.2
2.8 58 0.1
2.8 58.1 0.7
2.8 61 1.1
2.8 64 0
2.8 65 0.1
2.8 65.1 0.1
2.8 68 0.5
2.8 74 0.8
2.8 77 0.3
2.9 19 0.3
2.9 32 0.1
2.9 32.1 0.7
2.9 34 0
2.9 36 0.1
2.9 37 0.8
2.9 38 1
2.9 38.1 0.8
2.9 40 1
2.9 45 1
2.9 45.1 0.2
2.9 46 0.3
2.9 47 0.7
2.9 53 0.4
2.9 53.1 0
2.9 54 0.4
2.9 55 0.3
2.9 56 0.1
2.9 56.1 0.2
2.9 60 -0.2
2.9 61 0
2.9 62 0.2
2.9 62.1 0.1
2.9 63 0.2
2.9 67 0
2.9 68 0.3
2.9 73 0.3
2.9 73.1 0.2
3 22 1
3 24 0.1
3 24.1 0.4
3 29 0.6
3 34 0.2
3 39 0.2
3 41 0.4
3 41.1 0.7
3 42 1
3 42.1 0.8
3 56 0.2
3 65 0.2
3 69 0.3
3 71 0.5
3 78 0.2
3 79 0.1
3.1 17 0.8
3.1 18 0.5
3.1 22 1
3.1 32 0.2
3.1 32.1 0.9
3.1 38 0.3
3.1 44 0.5
3.1 46 0.2
3.1 53 0.1
3.1 56 0.1
3.1 56.1 0.2
3.1 64 0
3.1 70 0.4
3.1 72 0.6
3.1 76 0.2
3.2 18 0.7
3.2 21 0.3
3.2 22 1.1
3.2 36 1.2
3.2 38 0.6
3.2 38.1 0.8
3.2 42 0
3.2 46 -0.1
3.2 46.1 0.1
3.2 47 0.3
3.2 47.1 0.5
3.2 47.2 0.5
3.2 50 0.5
3.2 58 0.1
3.2 60 0.5
3.2 65 0.8
3.2 67 0
3.2 69 0.9
3.2 73 1
3.2 74 0
3.2 77 0.2
3.3 17 0.6
3.3 19 1.5
3.3 23 1
3.3 25 0.3
3.3 28 0.7
3.3 35 0.5
3.3 35.1 0.6
3.3 52 0.2
3.3 62 0.1
3.3 63 0.4
3.3 64 0
3.3 64.1 0.3
3.3 64.2 0.1
3.3 73 0.2
3.3 74 0.3
3.3 79 0.2
3.4 18 0.6
3.4 20 0.1
3.4 34 0.6
3.4 38 0.2
3.4 38.1 0.6
3.4 40 0.2
3.4 41 0.8
3.4 56 0.7
3.5 22 1
3.5 30 0.4
3.5 30.1 0.4
3.5 32 0.3
3.5 34 0.4
3.5 38 0.8
3.5 38.1 0.2
3.5 41 0.5
3.5 49 0.3
3.5 54 0.1
3.5 69 0.2
3.5 71 0.3
3.5 74 0.4
3.6 24 1.1
3.6 25 0.7
3.6 32 0.4
3.6 42 0
3.6 46 0.2
3.6 57 0.2
3.7 22 1.1
3.7 22.1 0.8
3.7 23 0.1
3.7 23.1 1.1
3.7 27 0.7
3.7 30 0.6
3.7 34 0.1
3.7 35 0.1
3.7 40 0.9
3.7 44 0.2
3.7 45 0.4
3.7 46 0.5
3.7 49 0.4
3.7 50 0.1
3.7 51 0.8
3.7 66 0.4
3.8 18 0.3
3.8 22 1.4
3.8 23 0.5
3.8 24 0.7
3.8 24.1 0.5
3.8 28 0.3
3.8 28.1 0.6
3.8 37 1.1
3.8 38 0.6
3.8 39 0.6
3.8 44 0.8
3.8 46 0
3.8 65 0.1
3.9 17 1.4
3.9 27 0.6
3.9 31 1
3.9 32 0.5
3.9 34 0.3
3.9 54 0.1
3.9 61 0.2
3.9 64 0.3
3.9 66 0.2
3.9 66.1 0.2
3.9 67 0
4 22 1
4 28 0.6
4 29 0.4
4 30 0.2
4 31 0.6
4 32 0.1
4 45 0.5
4 56 0.2
4 65 0.1
4 73 0.3
4.1 16 1.3
4.1 23 1.1
4.1 25 0.6
4.1 26 0.6
4.1 28 0.7
4.1 32 0.4
4.1 32.1 0.6
4.1 33 0.5
4.1 41 0.2
4.1 42 0.7
4.1 43 0.2
4.1 45 0.3
4.1 64 0.2
4.1 65 0
4.2 26 0.5
4.2 27 0.4
4.2 27.1 0.7
4.2 27.2 0.3
4.2 31 0.5
4.2 33 0.3
4.2 33.1 0.5
4.2 36 0.3
4.2 38 0.1
4.2 51 0.3
4.2 62 0.9
4.2 70 0.5
4.3 17 1.2
4.3 27 0.6
4.3 29 0.4
4.3 29.1 0.7
4.3 33 0.4
4.3 35 0.2
4.3 38 0.9
4.3 41 0.6
4.3 42 0.6
4.3 45 0.1
4.3 63 0.1
4.3 71 0.1
4.4 21 0.9
4.4 24 0.4
4.4 29 0.2
4.4 33 0.6
4.4 35 0.1
4.4 42 0
4.4 43 1
4.4 45 0.5
4.4 62 0.1
4.5 23 0.8
4.5 29 0.6
4.5 35 0.3
4.5 38 1.2
4.5 39 0.2
4.5 40 -0.3
4.5 42 0.6
4.5 42.1 0.6
4.6 22 1.1
4.6 25 0.5
4.6 25.1 0.6
4.6 32 0.6
4.6 34 0.7
4.6 35 0.6
4.6 37 0.4
4.6 41 0.7
4.7 27 0.7
4.7 32 0.6
4.7 33 0.5
4.7 37 0.3
4.8 23 0.9
4.8 25 0.6
4.8 26 1.1
4.8 34 0.7
4.8 34.1 0.6
4.8 37 0.2
4.8 38 1.1
4.8 47 0.7
4.8 57 0.5
4.8 64 0.4
4.9 21 0.9
4.9 23 1
4.9 26 0.5
4.9 27 0.5
4.9 28 0.3
4.9 28.1 0.2
4.9 33 0.7
4.9 33.1 0.5
4.9 34 0.5
4.9 40 0.7
4.9 44 0.5
5 30 0.4
5 41 0.2
5 48 0.7
5.1 27 0.5
5.1 33 0.6
5.1 43 0.1
5.1 45 0.5
5.2 30 0.7
5.2 31 0.7
5.2 35 0.6
5.2 38 1.1
5.2 47 0.5
5.3 30 0.5
5.3 32 0.4
5.4 30 0.6
5.4 32 0.3
5.4 38 0.9
5.5 32 0.7
5.5 39 0.9
5.6 38 0.8
5.6 41 -0.7
5.7 21 -0.4
5.7 33 0.3
5.7 37 0.9
5.8 64 0.1
5.9 34 0.3
6 26 0.9
6.5 61 -0.1
The (x,y) values define an unstructured grid. As a result I have had to use set dgrid3d
to build a regular grid by interpolation, since gnuplot does not perform triangulations for the time being.
The data being so oscillating, a good resolution requires the use of a very dense grid. I've tried set dgrid3d 512,512
and set dgrid3d 900,900
and splotted the file with pm3d, see below. In the latter case, resolution is better but as you see, there are still color jumps: is there a way to make the colors vary smoothly along the whole plot ? (only in less-rapidly-oscillating areas, the colors do vary smoothly). I have also projected the 3D plot onto the (x,y) plane with set contour
and then a thousand contours with set cntrparam levels
, to have a better resolution, as well as set palette maxcolors 1024
but that does not change anything. If anyone could give me a hint...
512x512-point grid with dgrid3d
900x900-point grid with dgrid3d
I don't really see how Delaunay triangulation is going to help in this case. A Gaussian kernel to dgrid3d seems a better option. It depends on the physical significance of the point values. Are they samples? Independent events? Should nearby points be averaged or summed?
For what it's worth you can do the triangulation in gnuplot 6. This mode is currently undocumented, as the implementation is only as only as complete as needed to serve as a step on the way to generating concave hulls. The plot style with polygons
takes the color from the first vertex of the triangle. A more complete implementation could allow other options like averaging the vertex z values.
set style fill solid border lc "black"
plot 'DATA' using 1:2:3 delaunay with polygons lc palette
Here, on the other hand, is the same data plotted using a Gaussian kernel density. Note that this is summing the contribution of nearby points, so the net z value is greater than the original range of z values. That may or may not capture the property you want. The extent of smoothing may be varied by changing the final two parameters in the set dgrid3d
command, which control the x and y distance over which any individual point contributes to the net value.
set dgrid3d 100,100 gauss kdensity 0.5,5.0
set pm3d noborder
set view map
splot 'DATA' with pm3d