I have a dataset that looks like this:
profession Australia_F Australia_M Canada_F Canada_M Kenya_F Kenya_M
Author 20 80 55 34 60 23
Librarian 10 34 89 33 89 12
Pilot 78 12 67 90 12 55
I want to plot a sort of heatmap with these values. I tried this:
melted_df = pd.melt(df, id_vars='Profession', var_name='Country_Gender', value_name='Number')
melted_df[['Country', 'Gender']] = melted_df['Country_Gender'].str.split('_', expand=True)
melted_df['Number'] = pd.to_numeric(melted_df['Number'], errors='coerce')
heatmap_data = melted_df.pivot_table(index='Profession', columns=['Country', 'Gender'], values='Number')
plt.figure(figsize=(10, 8))
sns.heatmap(heatmap_data, cmap='coolwarm', annot=True, fmt=".1f", linewidths=.5)
plt.xlabel('Country and Gender')
plt.ylabel('Profession')
plt.xticks(rotation=45)
plt.tight_layout()
plt.savefig('heatmap.png')
and it seems to work but currently it assigns different colors to all cells based on the numerical value. However, I only want 2 colors in my chart: red & blue.
what I want is that for each profession (each row), I compare each country's F vs M values and color the higher value cell in red.
For example, for Author, these three cells should be red:
Australia_M (80) Canada_F (55) Kenya_F (60)
while the other 3 in that row should be blue. How can I achieve this?
You can use two different dataframes for the coloring and for the text annotations. Creating a copy of the original dataframe, compare the even and the odd columns creates a dataframe of booleans. These booleans (internal values 0
for False
and 1
for True
) then decide the coloring.
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
data = {'Profession': ['Author', 'Librarian', 'Pilot'],
'Australia_F': [20, 10, 78],
'Australia_M': [80, 34, 12],
'Canada_F': [55, 89, 67],
'Canada_M': [34, 33, 90],
'Kenya_F': [60, 89, 12],
'Kenya_M': [23, 12, 55]}
df = pd.DataFrame(data).set_index('Profession')
df_coloring = df.copy()
for colF, colM in zip(df_coloring.columns[::2], df_coloring.columns[1::2]):
df_coloring[colF] = df[colF] > df[colM]
df_coloring[colM] = df[colM] > df[colF]
sns.set_style('white')
plt.figure(figsize=(10, 8))
sns.heatmap(df_coloring, cmap='coolwarm', annot=df, fmt=".1f", linewidths=.5, cbar=False)
plt.xlabel('Country and Gender')
plt.ylabel('Profession')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
Optionally, you could add extra separations, put the gender at the top and the country at the bottom:
sns.set_style('white')
plt.figure(figsize=(10, 8))
ax = sns.heatmap(df_coloring, cmap='coolwarm', annot=df, fmt=".0f", linewidths=.5, cbar=False, annot_kws={"size": 22})
countries = [l.get_text()[:-2] for l in ax.get_xticklabels()[::2]]
ax_top = ax.secondary_xaxis('top')
ax_top.set_xticks(ax.get_xticks(), [l.get_text()[-1:] for l in ax.get_xticklabels()])
ax_top.tick_params(length=0)
ax.set_xticks(range(1, len(df.columns), 2), countries)
for i in range(0, len(df.columns) + 1, 2):
ax.axvline(i, lw=4, color='white')
for i in range(0, len(df) + 1):
ax.axhline(i, lw=4, color='white')
ax.set_xlabel('Country and Gender')
ax.set_ylabel('Profession')
plt.tight_layout()
plt.show()