Search code examples
pythonpandasmatplotlibseaborn

Create Boxplot from median, std, 25% and 75% values


median = 3637
std = 1274.997414
perc_25 = 2627.0
perc_75 = 4238.0

I have 4 values derived from data. How can I make a Boxplot out of this? I expect a line symbolizing median, a box delimited by 25-percentile and 75-percentile and one point on each side for median+std and median-std.

Usually I need a list of values or a dataframe, but I already computed the statistics, now I just want to display them.


Solution

  • Internally, boxplot computes bxpstats with matplotlib.cbook.boxplot_stats (source), then it passes the result to Axes.bxp (source).

            bxpstats = cbook.boxplot_stats(x, whis=whis, bootstrap=bootstrap,
                                           labels=labels, autorange=autorange)
    
    ...
    
            artists = self.bxp(bxpstats, positions=positions, widths=widths,
                               vert=vert, patch_artist=patch_artist,
                               shownotches=notch, showmeans=showmeans,
                               showcaps=showcaps, showbox=showbox,
                               boxprops=boxprops, flierprops=flierprops,
                               medianprops=medianprops, meanprops=meanprops,
                               meanline=meanline, showfliers=showfliers,
                               capprops=capprops, whiskerprops=whiskerprops,
                               manage_ticks=manage_ticks, zorder=zorder,
                               capwidths=capwidths)
    

    You can shortcut the first steps by designing a dictionary in the correct format:

    import matplotlib.pyplot as plt
    
    median = 3637
    std = 1274.997414
    perc_25 = 2627.0
    perc_75 = 4238.0
    
    bxpstats = [{'whishi': median+std,
                 'whislo': median-std,
                 'fliers': [],
                 'q1': perc_25,
                 'med': median,
                 'q3': perc_75}]
    
    ax = plt.subplot()
    ax.bxp(bxpstats)
    

    Output:

    matplotlib boxplot from existing statistics

    If you want several boxes add more dictionaries in the list:

    bxpstats = [{'whishi': 5, 'whislo': 1, 'fliers': [6], 'q1': 2, 'med': 3, 'q3': 4},
                {'whishi': 5.5, 'whislo': 3, 'fliers': [2, 2.5, 5.7], 'q1': 4, 'med': 4.5, 'q3': 5}
               ]
    ax = plt.subplot()
    ax.bxp(bxpstats)
    

    matplotlib multiple boxplot from existing statistics

    To give you the full list of parameters:

    import matplotlib
    matplotlib.cbook.boxplot_stats([1, 2, 3, 100])
    
    [{'mean': 26.5,                 # mean (shown if showmeans=True)
      'iqr': 25.5,                  # q3-q1
      'cilo': -17.517500000000002,  # lower confidence interval (shown if shownotches=True)
      'cihi': 22.517500000000002,   # upper confidence interval (shown if shownotches=True)
      'whishi': 27.25,              # upper whisker
      'whislo': 1,                  # lower whisker
      'fliers': array([100]),       # outliers
      'q1': 1.75,                   # q1 (bottom of box)
      'med': 2.5,                   # median (orange line)
      'q3': 27.25}]                 # q3 (top of box)