My end goal with this program is to simulate constrained pendulums with springs but that is a goal for later, currently I have been trying to learn how object creation, positioning and interactions would work and will eventually build the way up.
Currently I have been trying to make my code produce N number of independent pendulums side by side but they all spawn at the same position.
I have tried a lot of things from trying to define a method to create multiple pendulums at once to the current iteration where I try to use a for loop for creating and shifting the position of the pendulum but to no avail.
import numpy as np
import manim as mn
class Pendulum:
def __init__(self, mass, length, theta):
self.mass = mass
self.length = length
self.g = -9.81
self.angle = theta
self.angular_vel = 0
def step(self, dt):
# Defining RK4
def runge_kutta_4(f, t, y0, h=None):
if h is None:
h = t[1] - t[0]
n = len(t)
y = np.zeros((n, len(y0)))
y[0] = y0
for i in range(n - 1):
k1 = h * f(t[i], y[i])
k2 = h * f(t[i] + h/2, y[i] + k1/2)
k3 = h * f(t[i] + h/2, y[i] + k2/2)
k4 = h * f(t[i] + h, y[i] + k3)
y[i+1] = y[i] + (k1 + 2*k2 + 2*k3 + k4) / 6
return y
def pendulum_equations(t, state):
theta, omega = state
force = self.mass * self.g * np.sin(theta)
torque = force * self.length
MoI = 1/3 * self.mass * self.length**2
alpha = torque / MoI
return np.array([omega, alpha])
state = np.array([self.angle, self.angular_vel])
t = np.array([0, dt])
sol = runge_kutta_4(pendulum_equations, t, state)
self.angle = sol[-1, 0]
self.angular_vel = sol[-1, 1]
class PhysicalPendulum(mn.Scene):
def construct(self):
p = Pendulum(2, 10, np.pi/2)
N = 3 # change number of pendulums here
pendulums = []
scale = 0.5
spacing = 3 # Adjust the spacing between pendulums as needed
def get_pendulum(i, rod_width=0.2, rod_height=1):
rod = mn.Rectangle(width=rod_width, height=scale * p.length, color=mn.BLUE)
rod.shift(mn.DOWN * scale * p.length / 2)
rod.rotate(p.angle, about_point=rod.get_top())
pendulum = mn.VGroup(rod)
pendulum.shift(mn.UP * 3) # Adjust the vertical shift as needed
if i % 2 == 0:
pendulum.shift(mn.RIGHT * spacing * i)
else:
pendulum.shift(mn.LEFT * spacing * i)
return pendulum
def step(pendulum, dt, i):
p.step(dt)
pendulum.become(get_pendulum(i))
for i in range(N):
pendulum = get_pendulum(i)
pendulum.add_updater(lambda mob, dt: step(mob, dt, i))
pendulums.append(pendulum)
self.add(*pendulums)
self.wait(20)
for pendulum in pendulums:
pendulum.remove_updater(step)
Also this is my first time trying Object Oriented Programming so I would appreciate any tips on how to improve the coding style and any comments on things I have been doing wrong.
This is a classical example of a good question. You were almost complete in your code. I made a few change to it, and as I was doing this in google.colab, there might be some things that you'll need to add,
import numpy as np
import manim as mn
class Pendulum:
g = -9.81
def __init__(self, mass, length, theta):
self.mass = mass
self.length = length
self.angle = theta
self.angular_vel = 0
def step(self, dt):
def runge_kutta_4(f, t, y0, h=None):
if h is None:
h = t[1] - t[0]
n = len(t)
y = np.zeros((n, len(y0)))
y[0] = y0
for i in range(n - 1):
k1 = h * f(t[i], y[i])
k2 = h * f(t[i] + h/2, y[i] + k1/2)
k3 = h * f(t[i] + h/2, y[i] + k2/2)
k4 = h * f(t[i] + h, y[i] + k3)
y[i+1] = y[i] + (k1 + 2*k2 + 2*k3 + k4) / 6
return y
def pendulum_equations(t, state):
theta, omega = state
force = self.mass * self.g * np.sin(theta)
torque = force * self.length
moment_of_inertia = 1/3 * self.mass * self.length**2
alpha = torque / moment_of_inertia
return np.array([omega, alpha])
state = np.array([self.angle, self.angular_vel])
t = np.array([0, dt])
sol = runge_kutta_4(pendulum_equations, t, state)
self.angle = sol[-1, 0]
self.angular_vel = sol[-1, 1]
class PhysicalPendulum(mn.Scene):
def construct(self):
N = 3
pendulums = [Pendulum(2, 10, np.pi/2) for _ in range(N)]
scale = 0.5
spacing = 3
def get_pendulum(pendulum, i, rod_width=0.2, rod_height=1):
rod = mn.Rectangle(width=rod_width, height=scale * pendulum.length, color=mn.BLUE)
rod.shift(mn.DOWN * scale * pendulum.length / 2)
rod.rotate(pendulum.angle, about_point=rod.get_top())
pendulum_group = mn.VGroup(rod)
pendulum_group.shift(mn.UP * 3)
pendulum_group.shift(mn.RIGHT * spacing * i)
return pendulum_group
def step(pendulum, dt, i):
pendulums[i].step(dt)
pendulum.become(get_pendulum(pendulums[i], i))
pendulum_groups = []
for i in range(N):
pendulum_group = get_pendulum(pendulums[i], i)
pendulum_group.add_updater(lambda mob, dt, i=i: step(mob, dt, i))
pendulum_groups.append(pendulum_group)
self.add(*pendulum_groups)
self.wait(20)
for pendulum_group in pendulum_groups:
pendulum_group.remove_updater(step)
To run it in colab, if you do, you'll have to do a few things. It is rather tricky to install manin
there. You need to do this:
!pip install manim
!apt-get install texlive texlive-latex-extra texlive-fonts-extra texlive-latex-recommended texlive-science dvipng
!apt-get install ffmpeg
!apt-get install sox
!apt-get install libcairo2-dev libjpeg-dev libgif-dev
!pip install manim
To run the code:
%load_ext manim
and
%%manim -ql -v WARNING PhysicalPendulum
Here is a snapshot: