Search code examples
cfor-loopgalois-field

C program never ends stuck in a for loop


I made a simple program to perform Galois Finite Field Multiplication but somehow the program is stuck in a loop.

#include<stdio.h>

int GaloisMult(int a, int b){
    int i,j=0,h=0,k,abits[8],bbits[8];
    for (i = 0; i < 8; i++){
        if(((a >> i) & 1) == 1) abits[j++] = i;
        if(((b >> i) & 1) == 1) bbits[h++] = i;
    }

    for (i = 0; i < j; i++) printf("%d ",abits[i]);
    printf("\n");
    for (i = 0; i < h; i++) printf("%d ",bbits[i]);

    int dbits[11] = {0};

//here
    for (k = 0; k < h; k++) {
        for (i = 0; i < j; i++){
            int index = abits[i] + bbits[k];
            dbits[index] = (dbits[index] + 1) % 2;
        }
    }

    int val = 0;
    for (i = 10; i >= 0; i--) val = (val << 1) | dbits[i];
    while(val > 0xff) val ^= 0x11b;
    return val;
}

int main(){
    int a = 0xac;
    int b = 0x0e;
    printf("\n%02X * %02X = %02X",a,b,GaloisMult(a,b));
}

the program never ends somehow stuck in the 2d for loop.


Solution

  • So the problem was not with the for loop but with the XOR logic in the While loop.

    the Galois Field XOR calculation goes like this, suppose we have 2 variables 11010001000 and 100011011. then we have to perform the XOR until the resulting bits has no 1 above 8th position.

    11010001000
    100011011
    -----------
    01011100100
    

    the result has 1 in the 10th position so we XOR that with the 2nd variable again but this time we remove the leading 0.

    1011100100
    100011011
    ----------
    0011010010
    

    this time the result has no 1 above 8th position so this is the final result we want.

    the problem with doing XOR like result = a ^ b will do

    11010001000
      100011011
    -----------
    11110010011
    

    which doesn't work. the correct logic i implemented is this

    #include<stdio.h>
    
    int intFromBits(int bits[]){
        int val = 0,i;
        for (i = 0; i < 15; i++) val = (val << 1) | bits[i];
        return val;
    }
    
    void xor(int d[15],int c[15],int* r){
        int i=0,j=0;
        while(d[i++] != 1) j++;
        for (i = 0; i < 15; i++) r[i] = d[i] ^ c[(i-j+15) % 15];
    }
    
    int GaloisMult(int a, int b){
        int i,j=0,h=0,k,abits[8],bbits[8],dbits[15] = {0},cons[] = {1,0,0,0,1,1,0,1,1,0,0,0,0,0,0};
        for (i = 0; i < 8; i++){
            if(((a >> i) & 1) == 1) abits[j++] = i;
            if(((b >> i) & 1) == 1) bbits[h++] = i;
        }
        for (k = 0; k < h; k++) for (i = 0; i < j; i++) dbits[14 - (abits[i] + bbits[k])] = (dbits[14 - (abits[i] + bbits[k])] + 1) % 2;
        while(intFromBits(dbits) > 0xFF) xor(dbits,cons,dbits);
    
        return intFromBits(dbits);
    }
    
    int main(){
        int a = 0xff;
        int b = 0xff;
        printf("\n%02X * %02X = %02X",a,b,GaloisMult(a,b));
    }
    

    the custom XOR function shifts the 2nd variable to adjust the trailing and leading 0s to perform the correct XOR logic required to do Galois Multiplication XOR.

    Note: this GaloisMult only works for 2^8 Fields.