In this call to df.sort_index()
on a MultiIndex dataframe, how to use func_2
for level two
?
func_1 = lambda s: s.str.lower()
func_2 = lambda x: np.abs(x)
m_sorted = df_multi.sort_index(level=['one', 'two'], key=func_1)
The documentation says "For MultiIndex inputs, the key is applied per level", which is ambiguous.
import pandas as pd
import numpy as np
np.random.seed(3)
# Create multiIndex
choice = lambda a, n: np.random.choice(a, n, replace=True)
df_multi = pd.DataFrame({
'one': pd.Series(choice(['a', 'B', 'c'], 8)),
'two': pd.Series(choice([1, -2, 3], 8)),
'A': pd.Series(choice([2,6,9,7] ,8))
})
df_multi = df_multi.set_index(['one', 'two'])
# Sort MultiIndex
func_1 = lambda s: s.str.lower()
func_2 = lambda x: np.abs(x)
m_sorted = df_multi.sort_index(level=['one'], key=func_1)
sort_index
takes a unique function as key
that would be used for all levels.
That said, you could use a wrapper function to map the desired sorting function per level name:
def sorter(level, default=lambda x: x):
return {
'one': lambda s: s.str.lower(),
'two': np.abs,
}.get(level.name, default)(level)
df_multi.sort_index(level=['one', 'two'], key=sorter)
NB. in case of no match a default function is used that returns the level unchanged.
Another option with numpy.lexsort
instead of sort_index
:
# levels, functions in desired sorting order
sorters = [('one', lambda s: s.str.lower()), ('two', np.abs)]
out = df_multi.iloc[np.lexsort([f(df_multi.index.get_level_values(lvl))
for lvl, f in sorters[::-1]])]
lexsort
uses the major keys last, thus the [::-1]
Output:
A
one two
a 1 6
-2 2
3 7
B 1 6
-2 7
-2 7
3 2
3 6