Search code examples
pythonflaskgoogle-chrome-extension

ERROR in backend: An error occurred: 'dict' object has no attribute 'lower'


Im new to create a machine learning model in a web extension tool, so basically im trying to create a machine learning model that helps to analyze email whether is it a phishing email or not. But when i try to run the code it show

ERROR in backend: An error occurred: 'dict' object has no attribute 'lower'

Any suggestion how to resolve this issue?

dataset = pd.read_csv("mail_data.csv")

mail_data = dataset.where((pd.notnull(dataset)), '')


mail_data.loc[mail_data['Category'] == 'spam', 'Category',] = 0
mail_data.loc[mail_data['Category'] == 'authentic', 'Category',] = 1


mail_data.dropna(subset=['Message'], inplace=True)
X = mail_data['Message'].astype(str).tolist()  
Y = mail_data['Category']


feature_extraction = TfidfVectorizer(min_df=1, stop_words='english', lowercase=True)
X_features = feature_extraction.fit_transform(X)


Y = Y.astype('int')


model = LogisticRegression()
model.fit(X_features, Y)

--

def detect_phishing(input_mail):
        input_data_feature = feature_extraction.transform([input_mail])
        prediction = model.predict(input_data_feature)
        return prediction[0]

--

@app.route('/predict', methods=['POST'])
def predict_phishing():
    if request.method == 'POST':
        try:
            payload = request.json
            email_content = payload.get('email_content', None)  # Assuming 'email_content' is the key in your JSON payload
            print('Received data:', email_content)

            

            # Call detect_phishing function
            prediction = detect_phishing(email_content)

            return jsonify({'prediction': prediction[0]})

        except Exception as e:
            app.logger.error(f'An error occurred: {str(e)}')
            app.logger.info(traceback.format_exc())
            return jsonify({'error': 'An error occurred'}), HTTPStatus.INTERNAL_SERVER_ERROR

    else:
        return jsonify({'error': 'Invalid method'}), HTTPStatus.METHOD_NOT_ALLOWED

Error code

    ERROR in backend: An error occurred: 'dict' object has no attribute 'lower'  
    INFO in backend: Traceback (most recent call last):  line 80, in predict_phishing
    line 60, in detect_phishing
File "C:\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\sklearn\feature_extraction\text.py", line 2162, in transform
    X = super().transform(raw_documents)
        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "C:\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\sklearn\feature_extraction\text.py", line 1434, in transform
    _, X = self._count_vocab(raw_documents, fixed_vocab=True)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "C:\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\sklearn\feature_extraction\text.py", line 1276, in _count_vocab
    for feature in analyze(doc):
                   ^^^^^^^^^^^^
  File "C:\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\sklearn\feature_extraction\text.py", line 110, in _analyze
    doc = preprocessor(doc)
          ^^^^^^^^^^^^^^^^^
  File "C:\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\sklearn\feature_extraction\text.py", line 68, in _preprocess
    doc = doc.lower()
          ^^^^^^^^^
AttributeError: 'dict' object has no attribute 'lower'

127.0.0.1 - - [11/Mar/2024 02:36:05] "POST /predict HTTP/1.1" 500 -

Solution

  • Most probably you are passing input_mail of the wrong type (expected: str, actual: dict) in your feature_extraction.transform([input_mail]) call in detect_phishing.

    To fix that, make sure you are passing an str:

    if not isinstance(input_mail, str):
      raise TypeError('Expected str for input_mail, got: %s' % type(input_mail))
    input_data_feature = feature_extraction.transform([input_mail])