In SDK V1, I am using a environment for compute cluster with a dockerfile string like this:
azureml_env = Environment("my_experiment")
azureml_env.python.conda_dependencies = CondaDependencies.create(
pip_packages=["pandas", "databricks-connect==10.4"],
)
dockerfile = rf"""
FROM mcr.microsoft.com/azureml/openmpi4.1.0-ubuntu22.04:latest
RUN mkdir -p /usr/share/man/man1
RUN apt-get -y update \
&& apt-get install openjdk-19-jdk -y \
&& rm -rf /var/lib/apt/lists/*
"""
azureml_env.docker.base_image = None
azureml_env.docker.base_dockerfile = dockerfile
So I am using mcr.microsoft.com/azureml/openmpi4.1.0-ubuntu22.04:latest
where it gives me a python 3.8.
But when I switch to SDK V2, I get a python 3.10, which is not compatible with my databricks runtime
that need python 3.8.
Here is my dockerfile:
FROM mcr.microsoft.com/azureml/openmpi4.1.0-ubuntu22.04:latest
RUN mkdir -p /usr/share/man/man1
RUN apt-get -y update \
&& apt-get install openjdk-19-jdk -y \
&& rm -rf /var/lib/apt/lists/*
COPY requirements.txt .
RUN pip install -r requirements.txt && rm requirements.txt
# set command
CMD ["bash"]
I call it like this in python:
azureml_env = Environment(
build=BuildContext(
path="deploy/utils/docker_context", # Where is my dockerfile and other file to copy inside
),
name="my_experiment",
)
azureml_env.validate()
self.ml_client.environments.create_or_update(azureml_env)
Why don't I get a python 3.8 but a python 3.10?
You cannot provide a conda.yaml
file when using a Docker build context. Thus, you need to create a conda environment and a Dockerfile as shown below:
FROM mcr.microsoft.com/azureml/openmpi4.1.0-ubuntu22.04:latest
WORKDIR /
ENV CONDA_PREFIX=/azureml-envs/sklearn-1.0
ENV CONDA_DEFAULT_ENV=$CONDA_PREFIX
ENV PATH=$CONDA_PREFIX/bin:$PATH
# This is needed for MPI to locate libpython
ENV LD_LIBRARY_PATH=$CONDA_PREFIX/lib:$LD_LIBRARY_PATH
# Create conda environment
COPY conda_dependencies.yaml .
RUN conda env create -p $CONDA_PREFIX -f conda_dependencies.yaml -q && \
rm conda_dependencies.yaml && \
conda run -p $CONDA_PREFIX pip cache purge && \
conda clean -a -y
RUN mkdir -p /usr/share/man/man1
RUN apt-get -y update \
&& apt-get install openjdk-19-jdk -y \
&& rm -rf /var/lib/apt/lists/*
COPY requirements.txt .
RUN pip install -r requirements.txt && rm requirements.txt
# Set command
CMD ["bash"]
Here, I am creating a conda environment first with Python version 3.8 and running the remaining commands.
conda_dependencies.yaml
name: pydata-example
channels:
- conda-forge
dependencies:
- python=3.8
- pip=21.2.4
- pip:
- numpy==1.22
- scipy==1.7.1
- pandas==1.3.0
- scikit-learn==0.24.2
- adlfs==2021.9.1
- fsspec==2021.8.1
env_docker_context = Environment(
build=BuildContext(path="docker-contexts/tst"),
name="docker-context-example-1",
description="Environment created from a Docker context."
)
ml_client.environments.create_or_update(env_docker_context)
Output:
And in the environment:
If you want to avoid these commands, you can try using other images with Python 3.8.