Search code examples
rrandomdistributionsampling

Sampling transformation - rexp vs rweibull


I am working with different sampling functions, and I am wondering why these two formulations do not give the same result

n=2
set.seed(1)
rweibull(n,shape = 1,scale = 1)
# [1] 1.3261078 0.9885284
set.seed(1)
rexp(n,rate = 1)
# [1] 0.7551818 1.1816428

when this is equivalent:

x <- c(0, rlnorm(50))
all.equal(dweibull(x, shape = 1), dexp(x))

Is it a problem of reverse transformation sampling ?

If yes, why ?

Thanks,


Solution

  • First of all, d* denotes the density function, which is deterministic and that's why you can achieve the same results in the following code

    x <- c(0, rlnorm(50))
    all.equal(dweibull(x, shape = 1), dexp(x)
    

    However, r* gives random samples of a given distribution, which depends on how the randomness is triggered.

    #include "nmath.h"
    
    double rweibull(double shape, double scale)
    {
        if (!R_FINITE(shape) || !R_FINITE(scale) || shape <= 0. || scale <= 0.) {
        if(scale == 0.) return 0.;
        /* else */
        ML_ERR_return_NAN;
        }
    
        return scale * pow(-log(unif_rand()), 1.0 / shape);
    }
    
    #include "nmath.h"
    
    double rexp(double scale)
    {
        if (!R_FINITE(scale) || scale <= 0.0) {
        if(scale == 0.) return 0.;
        /* else */
        ML_ERR_return_NAN;
        }
        return scale * exp_rand(); // --> in ./sexp.c
    }
    

    where exp_rand() is used to generate exponential random variable, which is NOT simply the same as pow(-log(unif_rand()), 1.0 / shape) shown in rweibull.c, but more complicated like below

    #include "nmath.h"
    
    double exp_rand(void)
    {
        /* q[k-1] = sum(log(2)^k / k!)  k=1,..,n, */
        /* The highest n (here 16) is determined by q[n-1] = 1.0 */
        /* within standard precision */
        const static double q[] =
        {
        0.6931471805599453,
        0.9333736875190459,
        0.9888777961838675,
        0.9984959252914960,
        0.9998292811061389,
        0.9999833164100727,
        0.9999985691438767,
        0.9999998906925558,
        0.9999999924734159,
        0.9999999995283275,
        0.9999999999728814,
        0.9999999999985598,
        0.9999999999999289,
        0.9999999999999968,
        0.9999999999999999,
        1.0000000000000000
        };
    
        double a = 0.;
        double u = unif_rand();    /* precaution if u = 0 is ever returned */
        while(u <= 0. || u >= 1.) u = unif_rand();
        for (;;) {
        u += u;
        if (u > 1.)
            break;
        a += q[0];
        }
        u -= 1.;
    
        if (u <= q[0])
        return a + u;
    
        int i = 0;
        double ustar = unif_rand(), umin = ustar;
        do {
        ustar = unif_rand();
        if (umin > ustar)
            umin = ustar;
        i++;
        } while (u > q[i]);
        return a + umin * q[0];
    }