I am working with different sampling functions, and I am wondering why these two formulations do not give the same result
n=2
set.seed(1)
rweibull(n,shape = 1,scale = 1)
# [1] 1.3261078 0.9885284
set.seed(1)
rexp(n,rate = 1)
# [1] 0.7551818 1.1816428
when this is equivalent:
x <- c(0, rlnorm(50))
all.equal(dweibull(x, shape = 1), dexp(x))
Is it a problem of reverse transformation sampling ?
If yes, why ?
Thanks,
First of all, d*
denotes the density function, which is deterministic and that's why you can achieve the same results in the following code
x <- c(0, rlnorm(50))
all.equal(dweibull(x, shape = 1), dexp(x)
However, r*
gives random samples of a given distribution, which depends on how the randomness is triggered.
#include "nmath.h"
double rweibull(double shape, double scale)
{
if (!R_FINITE(shape) || !R_FINITE(scale) || shape <= 0. || scale <= 0.) {
if(scale == 0.) return 0.;
/* else */
ML_ERR_return_NAN;
}
return scale * pow(-log(unif_rand()), 1.0 / shape);
}
#include "nmath.h"
double rexp(double scale)
{
if (!R_FINITE(scale) || scale <= 0.0) {
if(scale == 0.) return 0.;
/* else */
ML_ERR_return_NAN;
}
return scale * exp_rand(); // --> in ./sexp.c
}
where exp_rand()
is used to generate exponential random variable, which is NOT simply the same as pow(-log(unif_rand()), 1.0 / shape)
shown in rweibull.c
, but more complicated like below
#include "nmath.h"
double exp_rand(void)
{
/* q[k-1] = sum(log(2)^k / k!) k=1,..,n, */
/* The highest n (here 16) is determined by q[n-1] = 1.0 */
/* within standard precision */
const static double q[] =
{
0.6931471805599453,
0.9333736875190459,
0.9888777961838675,
0.9984959252914960,
0.9998292811061389,
0.9999833164100727,
0.9999985691438767,
0.9999998906925558,
0.9999999924734159,
0.9999999995283275,
0.9999999999728814,
0.9999999999985598,
0.9999999999999289,
0.9999999999999968,
0.9999999999999999,
1.0000000000000000
};
double a = 0.;
double u = unif_rand(); /* precaution if u = 0 is ever returned */
while(u <= 0. || u >= 1.) u = unif_rand();
for (;;) {
u += u;
if (u > 1.)
break;
a += q[0];
}
u -= 1.;
if (u <= q[0])
return a + u;
int i = 0;
double ustar = unif_rand(), umin = ustar;
do {
ustar = unif_rand();
if (umin > ustar)
umin = ustar;
i++;
} while (u > q[i]);
return a + umin * q[0];
}