I am using Ultralytics YOLO for license plate detection, and I'm encountering an issue when trying to extract bounding box coordinates from the Results.boxes object. I have inspected the structure of the Results.boxes object, but I am having difficulty accessing the bounding box information correctly.
class ImageProcessing:
def __init__(self, model_path: Path, input_image: Path, output_image: Path):
if not isinstance(model_path, Path):
raise TypeError("model_path must be a pathlib.Path instance")
if not isinstance(input_image, Path) or not isinstance(output_image, Path):
raise TypeError("input_image and output_image must be pathlib.Path instances")
# Load the YOLO model from the provided path
self.model = YOLO(str(model_path))
self.input_image = input_image
self.output_image = output_image
def ascertain_license_plates_as_image(self, threshold: float = 0.5, fontscale: float = 1.3, color: tuple = (0, 255, 0), thickness: int = 3):
image = opencv.imread(str(self.input_image))
results = self.model(image)
# Check if results is a list and get the first result
if isinstance(results, list):
results = results[0]
# Iterate through each detected object
for box in results.boxes:
# Extract coordinates, confidence, and class ID
x1, y1, x2, y2, conf, class_id = box.data[0][0], box.data[0][1], box.data[0][2], box.data[0][3], box.conf.item(), int(box.cls.item())
if conf > threshold:
opencv.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color, thickness)
label = results.names[class_id].upper() if results.names else f'class {class_id}'
opencv.putText(image, label, (int(x1), int(y1) - 10), opencv.FONT_HERSHEY_SIMPLEX, fontscale, color, thickness, opencv.LINE_AA)
opencv.imwrite(str(self.output_image), image)
return results
However, I'm getting an IndexError, and it seems that my indexing might be incorrect for this particular Boxes object. Or even worse, cv2 is not highlighting the license plate.
Considering results = results[0]
, for box in results.boxes
will return an ultralytics.engine.results.Boxes object(s) with the following attributes (the values are given as an example):
cls: tensor([15.], device='cuda:0')
conf: tensor([0.5666], device='cuda:0')
data: tensor([[5.7743e+02, 1.3452e+02, 2.5194e+03, 2.7360e+03, 5.6664e-01, 1.5000e+01]], device='cuda:0')
id: None
is_track: False
orig_shape: (2736, 3648)
shape: torch.Size([1, 6])
xywh: tensor([[1548.4325, 1435.2581, 1942.0007, 2601.4839]], device='cuda:0')
xywhn: tensor([[0.4245, 0.5246, 0.5323, 0.9508]], device='cuda:0')
xyxy: tensor([[ 577.4322, 134.5160, 2519.4329, 2736.0000]], device='cuda:0')
xyxyn: tensor([[0.1583, 0.0492, 0.6906, 1.0000]], device='cuda:0')
It will be better to call them as it is, unpacking from the torch.Tensor where it is necessary:
results = results[0]
for box in results.boxes:
x1, y1, x2, y2 = box.xyxy.tolist()[0]
conf = box.conf.item()
class_id = int(box.cls.item())
# print([x1, y1, x2, y2], conf, class_id)
# output: [577.4321899414062, 134.5160369873047, 2519.432861328125, 2736.0] 0.5666425228118896 15