I am trying to push the results of SQL commands in airflow SQLHook. Even though I am able to view the command results in log but it is not pushed into xcom.
class SqlExecuteOperator(BaseOperator):
template_fields = ('sql',)
template_ext = ('.hql', '.sql',)
ui_color = '#fff7e6'
@apply_defaults
def __init__(
self, sql,
conn_id=None,
database=None,
*args, **kwargs):
super(SqlExecuteOperator, self).__init__(*args, **kwargs)
self.conn_id = conn_id
self.sql = sql
self.database = database
def execute(self, **kwargs):
self.log.info('Executing SQL statement: ' + self.sql)
records = self.get_db_hook().get_first(self.sql)
self.log.info("Record: " + str(records))
return int(records[0])
def get_db_hook(self):
conn = BaseHook.get_connection(conn_id=self.conn_id)
hook = BaseHook.get_hook(conn_id=self.conn_id)
hook.connection = conn
if self.database:
hook.schema = self.database
return hook
operator that I am using is as follows:
@task
def get_results_from_sql(**kwargs):
sql_task_op = SqlExecuteOperator(
task_id="sql_task",
conn_id=SQL_CONNECTION,
sql="SELECT 1",
database='TEST',
do_xcom_push=True,
)
sql_task_op.execute(context=dict())
Please find the log details
95648bf8cf8b
*** Found local files:
*** * /opt/airflow/logs/dag_id=SQL_TEST/run_id=manual__2023-12-22T03:53:23.673472+00:00/task_id=get_results_from_sql/attempt=1.log
[2023-12-21, 22:53:24 EST] {taskinstance.py:1159} INFO - Dependencies all met for dep_context=non-requeueable deps ti=<TaskInstance: SQL_TEST.get_results_from_sql manual__2023-12-22T03:53:23.673472+00:00 [queued]>
[2023-12-21, 22:53:24 EST] {taskinstance.py:1159} INFO - Dependencies all met for dep_context=requeueable deps ti=<TaskInstance: SQL_TEST.get_results_from_sql manual__2023-12-22T03:53:23.673472+00:00 [queued]>
[2023-12-21, 22:53:24 EST] {taskinstance.py:1361} INFO - Starting attempt 1 of 2
[2023-12-21, 22:53:24 EST] {taskinstance.py:1382} INFO - Executing <Task(_PythonDecoratedOperator): get_results_from_sql> on 2023-12-22 03:53:23.673472+00:00
[2023-12-21, 22:53:24 EST] {standard_task_runner.py:57} INFO - Started process 605102 to run task
[2023-12-21, 22:53:24 EST] {standard_task_runner.py:84} INFO - Running: ['***', 'tasks', 'run', 'SQL_TEST', 'get_results_from_sql', 'manual__2023-12-22T03:53:23.673472+00:00', '--job-id', '266440', '--raw', '--subdir', 'DAGS_FOLDER/sql_test.py', '--cfg-path', '/tmp/tmp0b98o6o4']
[2023-12-21, 22:53:24 EST] {standard_task_runner.py:85} INFO - Job 266440: Subtask get_results_from_sql
[2023-12-21, 22:53:24 EST] {task_command.py:416} INFO - Running <TaskInstance: SQL_TEST.get_results_from_sql manual__2023-12-22T03:53:23.673472+00:00 [running]> on host 95648bf8cf8b
[2023-12-21, 22:53:25 EST] {taskinstance.py:1662} INFO - Exporting env vars: AIRFLOW_CTX_DAG_OWNER='***' AIRFLOW_CTX_DAG_ID='SQL_TEST' AIRFLOW_CTX_TASK_ID='get_results_from_sql' AIRFLOW_CTX_EXECUTION_DATE='2023-12-22T03:53:23.673472+00:00' AIRFLOW_CTX_TRY_NUMBER='1' AIRFLOW_CTX_DAG_RUN_ID='manual__2023-12-22T03:53:23.673472+00:00'
[2023-12-21, 22:53:25 EST] {sql_test.py:30} INFO - Executing SQL statement: SELECT 1
[2023-12-21, 22:53:25 EST] {base.py:73} INFO - Using connection ID 'MS_TES' for task execution.
[2023-12-21, 22:53:25 EST] {sql.py:418} INFO - Running statement: SELECT 1, parameters: None
[2023-12-21, 22:53:25 EST] {sql_test.py:32} INFO - Record: (1,)
[2023-12-21, 22:53:25 EST] {python.py:194} INFO - Done. Returned value was: None
[2023-12-21, 22:53:25 EST] {taskinstance.py:1400} INFO - Marking task as SUCCESS. dag_id=SQL_TEST, task_id=get_results_from_sql, execution_date=20231222T035323, start_date=20231222T035324, end_date=20231222T035325
[2023-12-21, 22:53:25 EST] {local_task_job_runner.py:228} INFO - Task exited with return code 0
[2023-12-21, 22:53:25 EST] {taskinstance.py:2778} INFO - 1 downstream tasks scheduled from follow-on schedule check
I am not sure what I am missing. Please provide me a solution if anyone faced similar issue.
As has been mentioned already you should not be calling execute
methods directly. Airflow calls these and uses their results to create the XCom messages.
The simplest usage is to return the raw result sets from MsSqlOperator
such as in this dags/mssql_operator_xcom_dag.py
file:
from airflow.decorators import dag, task
from airflow.operators.mssql_operator import MsSqlOperator
from datetime import datetime
@dag(start_date=datetime(2023, 1, 1), schedule="@daily", catchup=False)
def mssql_operator_xcom_dag():
@task
def display_results(ti):
xcom_results = ti.xcom_pull(key="return_value", task_ids="query_results")[0][0]
return f'query_results said, "{xcom_results}"'
query = MsSqlOperator(
task_id="query_results",
mssql_conn_id="app_env_instanceid_mssql",
database="msdb",
sql="SELECT 'Hello, MsSqlOperator!';"
)
display = display_results()
query >> display
mssql_operator_xcom_dag()
After executing this DAG you'll see the following XCom messages output from the query_results
and display_results
tasks:
The MsSqlOperator
calls MsSqlHook
to do most of the work so you can restructure things slightly to get exactly the same results using MsSqlHook
such as in this dags/mssql_hook_xcom_dag.py
file:
from airflow.decorators import dag, task
from airflow.providers.microsoft.mssql.hooks.mssql import MsSqlHook
from datetime import datetime
@dag(start_date=datetime(2023, 1, 1), schedule="@daily", catchup=False)
def mssql_hook_xcom_dag():
@task
def query_results(conn_id, schema, sql):
mssql = MsSqlHook(mssql_conn_id=conn_id, schema=schema)
results = mssql.get_records(sql=sql)
return results
@task
def display_results(ti):
xcom_results = ti.xcom_pull(key="return_value", task_ids="query_results")[0][0]
return f'query_results said, "{xcom_results}"'
query = query_results(
conn_id="app_env_instanceid_mssql",
schema="msdb",
sql="SELECT 'Hello, MsSqlHook!';"
)
display = display_results()
query >> display
mssql_hook_xcom_dag()
After executing this DAG you'll see the following XCom messages output from the query_results
and display_results
tasks:
Of the two approaches MsSqlHook
can be more useful as it gives you the opportunity to return the results in different formats, such as returning a DataFrame by using mssql.get_pandas_df(sql=sql)
instead.
The above DAGs can be demonstrated quickly in Docker containers, based on Apache's demo compose file from https://airflow.apache.org/docs/apache-airflow/2.8.0/docker-compose.yaml with the addition of an SQL Server 2019 container to test MsSqlOperator
and MsSqlHook
:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
# Basic Airflow cluster configuration for CeleryExecutor with Redis and PostgreSQL.
#
# WARNING: This configuration is for local development. Do not use it in a production deployment.
#
# This configuration supports basic configuration using environment variables or an .env file
# The following variables are supported:
#
# AIRFLOW_IMAGE_NAME - Docker image name used to run Airflow.
# Default: apache/airflow:2.8.0
# AIRFLOW_UID - User ID in Airflow containers
# Default: 50000
# AIRFLOW_PROJ_DIR - Base path to which all the files will be volumed.
# Default: .
# Those configurations are useful mostly in case of standalone testing/running Airflow in test/try-out mode
#
# _AIRFLOW_WWW_USER_USERNAME - Username for the administrator account (if requested).
# Default: airflow
# _AIRFLOW_WWW_USER_PASSWORD - Password for the administrator account (if requested).
# Default: airflow
# _PIP_ADDITIONAL_REQUIREMENTS - Additional PIP requirements to add when starting all containers.
# Use this option ONLY for quick checks. Installing requirements at container
# startup is done EVERY TIME the service is started.
# A better way is to build a custom image or extend the official image
# as described in https://airflow.apache.org/docs/docker-stack/build.html.
# Default: ''
#
# Feel free to modify this file to suit your needs.
---
x-airflow-common:
&airflow-common
# In order to add custom dependencies or upgrade provider packages you can use your extended image.
# Comment the image line, place your Dockerfile in the directory where you placed the docker-compose.yaml
# and uncomment the "build" line below, Then run `docker-compose build` to build the images.
image: ${AIRFLOW_IMAGE_NAME:-apache/airflow:2.8.0}
# build: .
environment:
&airflow-common-env
AIRFLOW__CORE__EXECUTOR: CeleryExecutor
AIRFLOW__DATABASE__SQL_ALCHEMY_CONN: postgresql+psycopg2://airflow:airflow@postgres/airflow
AIRFLOW__CELERY__RESULT_BACKEND: db+postgresql://airflow:airflow@postgres/airflow
AIRFLOW__CELERY__BROKER_URL: redis://:@redis:6379/0
AIRFLOW__CORE__FERNET_KEY: ''
AIRFLOW__CORE__DAGS_ARE_PAUSED_AT_CREATION: 'true'
AIRFLOW__CORE__LOAD_EXAMPLES: 'true'
AIRFLOW__API__AUTH_BACKENDS: 'airflow.api.auth.backend.basic_auth,airflow.api.auth.backend.session'
# yamllint disable rule:line-length
# Use simple http server on scheduler for health checks
# See https://airflow.apache.org/docs/apache-airflow/stable/administration-and-deployment/logging-monitoring/check-health.html#scheduler-health-check-server
# yamllint enable rule:line-length
AIRFLOW__SCHEDULER__ENABLE_HEALTH_CHECK: 'true'
# WARNING: Use _PIP_ADDITIONAL_REQUIREMENTS option ONLY for a quick checks
# for other purpose (development, test and especially production usage) build/extend Airflow image.
_PIP_ADDITIONAL_REQUIREMENTS: ${_PIP_ADDITIONAL_REQUIREMENTS:-}
volumes:
- ${AIRFLOW_PROJ_DIR:-.}/dags:/opt/airflow/dags
- ${AIRFLOW_PROJ_DIR:-.}/logs:/opt/airflow/logs
- ${AIRFLOW_PROJ_DIR:-.}/config:/opt/airflow/config
- ${AIRFLOW_PROJ_DIR:-.}/plugins:/opt/airflow/plugins
user: "${AIRFLOW_UID:-50000}:0"
depends_on:
&airflow-common-depends-on
redis:
condition: service_healthy
postgres:
condition: service_healthy
services:
sql2019:
image: mcr.microsoft.com/mssql/server:2019-latest
container_name: sql2019
environment:
- "ACCEPT_EULA=Y"
- "MSSQL_SA_PASSWORD=StrongPassw0rd"
restart: always
postgres:
image: postgres:13
environment:
POSTGRES_USER: airflow
POSTGRES_PASSWORD: airflow
POSTGRES_DB: airflow
volumes:
- postgres-db-volume:/var/lib/postgresql/data
healthcheck:
test: ["CMD", "pg_isready", "-U", "airflow"]
interval: 10s
retries: 5
start_period: 5s
restart: always
redis:
image: redis:latest
expose:
- 6379
healthcheck:
test: ["CMD", "redis-cli", "ping"]
interval: 10s
timeout: 30s
retries: 50
start_period: 30s
restart: always
airflow-webserver:
<<: *airflow-common
command: webserver
ports:
- "8080:8080"
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:8080/health"]
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-scheduler:
<<: *airflow-common
command: scheduler
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:8974/health"]
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-worker:
<<: *airflow-common
command: celery worker
healthcheck:
# yamllint disable rule:line-length
test:
- "CMD-SHELL"
- 'celery --app airflow.providers.celery.executors.celery_executor.app inspect ping -d "celery@$${HOSTNAME}" || celery --app airflow.executors.celery_executor.app inspect ping -d "celery@$${HOSTNAME}"'
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
environment:
<<: *airflow-common-env
# Required to handle warm shutdown of the celery workers properly
# See https://airflow.apache.org/docs/docker-stack/entrypoint.html#signal-propagation
DUMB_INIT_SETSID: "0"
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-triggerer:
<<: *airflow-common
command: triggerer
healthcheck:
test: ["CMD-SHELL", 'airflow jobs check --job-type TriggererJob --hostname "$${HOSTNAME}"']
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-init:
<<: *airflow-common
entrypoint: /bin/bash
# yamllint disable rule:line-length
command:
- -c
- |
if [[ -z "${AIRFLOW_UID}" ]]; then
echo
echo -e "\033[1;33mWARNING!!!: AIRFLOW_UID not set!\e[0m"
echo "If you are on Linux, you SHOULD follow the instructions below to set "
echo "AIRFLOW_UID environment variable, otherwise files will be owned by root."
echo "For other operating systems you can get rid of the warning with manually created .env file:"
echo " See: https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#setting-the-right-airflow-user"
echo
fi
one_meg=1048576
mem_available=$$(($$(getconf _PHYS_PAGES) * $$(getconf PAGE_SIZE) / one_meg))
cpus_available=$$(grep -cE 'cpu[0-9]+' /proc/stat)
disk_available=$$(df / | tail -1 | awk '{print $$4}')
warning_resources="false"
if (( mem_available < 4000 )) ; then
echo
echo -e "\033[1;33mWARNING!!!: Not enough memory available for Docker.\e[0m"
echo "At least 4GB of memory required. You have $$(numfmt --to iec $$((mem_available * one_meg)))"
echo
warning_resources="true"
fi
if (( cpus_available < 2 )); then
echo
echo -e "\033[1;33mWARNING!!!: Not enough CPUS available for Docker.\e[0m"
echo "At least 2 CPUs recommended. You have $${cpus_available}"
echo
warning_resources="true"
fi
if (( disk_available < one_meg * 10 )); then
echo
echo -e "\033[1;33mWARNING!!!: Not enough Disk space available for Docker.\e[0m"
echo "At least 10 GBs recommended. You have $$(numfmt --to iec $$((disk_available * 1024 )))"
echo
warning_resources="true"
fi
if [[ $${warning_resources} == "true" ]]; then
echo
echo -e "\033[1;33mWARNING!!!: You have not enough resources to run Airflow (see above)!\e[0m"
echo "Please follow the instructions to increase amount of resources available:"
echo " https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#before-you-begin"
echo
fi
mkdir -p /sources/logs /sources/dags /sources/plugins
chown -R "${AIRFLOW_UID}:0" /sources/{logs,dags,plugins}
exec /entrypoint airflow version
# yamllint enable rule:line-length
environment:
<<: *airflow-common-env
_AIRFLOW_DB_MIGRATE: 'true'
_AIRFLOW_WWW_USER_CREATE: 'true'
_AIRFLOW_WWW_USER_USERNAME: ${_AIRFLOW_WWW_USER_USERNAME:-airflow}
_AIRFLOW_WWW_USER_PASSWORD: ${_AIRFLOW_WWW_USER_PASSWORD:-airflow}
_PIP_ADDITIONAL_REQUIREMENTS: ''
user: "0:0"
volumes:
- ${AIRFLOW_PROJ_DIR:-.}:/sources
airflow-cli:
<<: *airflow-common
profiles:
- debug
environment:
<<: *airflow-common-env
CONNECTION_CHECK_MAX_COUNT: "0"
# Workaround for entrypoint issue. See: https://github.com/apache/airflow/issues/16252
command:
- bash
- -c
- airflow
# You can enable flower by adding "--profile flower" option e.g. docker-compose --profile flower up
# or by explicitly targeted on the command line e.g. docker-compose up flower.
# See: https://docs.docker.com/compose/profiles/
flower:
<<: *airflow-common
command: celery flower
profiles:
- flower
ports:
- "5555:5555"
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:5555/"]
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
volumes:
postgres-db-volume:
And a simple up.sh
script to start the composition, install the required Airflow providers and create the Connection that's used in the above DAGs:
#!/bin/bash
function install_to_container {
CONTAINER_ID=$1
docker exec -it -u root $CONTAINER_ID bash -c '
apt-get update
apt-get install --no-install-recommends --yes build-essential manpages-dev unixodbc-dev
'
docker exec -it -u airflow $CONTAINER_ID bash -c '
python -m pip install --upgrade pip
pip install apache-airflow-providers-odbc
pip install apache-airflow-providers-microsoft-mssql
'
docker container restart $CONTAINER_ID
}
docker compose up airflow-init
docker compose up -d
install_to_container sql2019-apache-airflow-airflow-webserver-1
install_to_container sql2019-apache-airflow-airflow-worker-1
install_to_container sql2019-apache-airflow-airflow-scheduler-1
curl -X POST 'http://localhost:8080/api/v1/connections' \
--user 'airflow:airflow' \
-H 'Content-Type: application/json' \
-d '{
"connection_id": "app_env_instanceid_mssql",
"conn_type": "mssql",
"host": "sql2019",
"login": "sa",
"schema": "msdb",
"port": 1433,
"password": "StrongPassw0rd"
}'
And, finally, a down.sh
script to tear down the Docker containers and images:
#!/bin/bash
docker compose down --volumes --remove-orphans