I have created a hexbin "heat map" in Python using plotly by mapping a number of locations (using GPS latitude / longitude), along with the value of each location. See code below for sample df and hexbin figure plot.
Data Desired
When I mouse-over each hexbin, I can see the average value contained within that hexbin. But what I want is a way to download into a pandas df the following info for each hexbin:
My Question
How can I download the data described in the bullets above into a pandas df?
Code example
# Import dependencies
import pandas as pd
import numpy as np
import plotly.figure_factory as ff
import plotly.express as px
# Create a list of GPS coordinates
gps_coordinates = [[32.7792, -96.7959, 10000],
[32.7842, -96.7920, 15000],
[32.8021, -96.7819, 12000],
[32.7916, -96.7833, 26000],
[32.7842, -96.7920, 51000],
[32.7842, -96.7920, 17000],
[32.7792, -96.7959, 25000],
[32.7842, -96.7920, 19000],
[32.7842, -96.7920, 31000],
[32.7842, -96.7920, 40000]]
# Create a DataFrame with the GPS coordinates
df = pd.DataFrame(gps_coordinates, columns=['LATITUDE', 'LONGITUDE', 'Value'])
# Print the DataFrame
display(df)
# Create figure using 'df_redfin_std_by_year_and_acreage_bin' data
fig = ff.create_hexbin_mapbox(
data_frame=df, lat='LATITUDE', lon='LONGITUDE',
nx_hexagon=2,
opacity=0.2,
labels={"color": "Dollar Value"},
color='Value',
agg_func=np.mean,
color_continuous_scale="Jet",
zoom=14,
min_count=1, # This gets rid of boxes for which we have no data
height=900,
width=1600,
show_original_data=True,
original_data_marker=dict(size=5, opacity=0.6, color="deeppink"),
)
# Create the map
fig.update_layout(mapbox_style="open-street-map")
fig.show()
You can extract the coordinates of the six corners of each hexbin as well as the values from fig.data[0]
. However, I am not sure where the centroids information is stored in the figure object, but we can create a geopandas dataframe from this data, and get the directly get the centroids
attribute of the geometry column:
import geopandas as gpd from shapely.geometry import LineString
coordinates = [feature['geometry']['coordinates'] for feature in fig.data[0].geojson['features']]
values = fig.data[0]['z']
hexbins_df = pd.DataFrame({'coordinates': coordinates, 'values': values})
hexbins_df['geometry'] = hexbins_df['coordinates'].apply(lambda x: LineString(x[0]))
hexbins_gdf = gpd.GeoDataFrame(hexbins_df, geometry='geometry')
hexbins_gdf['centroid'] = hexbins_gdf['geometry'].centroid
corners_df = hexbins_gdf['coordinates'].apply(lambda x: pd.Series(x[0])).rename(columns=lambda x: f'corner_{x+1}')
hexbins_df = pd.concat([hexbins_df, corners_df], axis=1).drop(columns='corner_7') # we drop corner_7 since that is the same as the starting corner
The resulting geopandas dataframe looks something like this:
>>> hexbins_df
coordinates values ... corner_5 corner_6
0 [[[-96.7889, 32.78215666477984], [-96.78539999... 28833.333333 ... [-96.792400000007, 32.7872532054738] [-96.792400000007, 32.78385554412095]
1 [[[-96.792400000007, 32.777059832108314], [-96... 17500.000000 ... [-96.79590000001399, 32.78215666477984] [-96.79590000001399, 32.77875880877266]
2 [[[-96.785399999993, 32.7872532054738], [-96.7... 26000.000000 ... [-96.7889, 32.79234945416662] [-96.7889, 32.788951987483806]
3 [[[-96.785399999993, 32.79744541083471], [-96.... 12000.000000 ... [-96.7889, 32.80254107545448] [-96.7889, 32.79914399815894]
[4 rows x 21 columns]