Search code examples
pythonmathoptimizationlinear-programmingpulp

False result about linear programming problem from pulp to gurobipy


This is my first time ask question on Stack Overflow. Recently I try to convert gurobipy code to pulp and meet some problem. Data resource:

Goal:

  • Minimize the total daily wages the employer must pay out.

Constraints:

  • At any given hour, you must meet the minimum staffing requirement.
  • An employee can only work one shift a day.
  • An employee must work within his available hours.
  • If an employee is called for duty, they must work at least a specified minimum number of hours, and no more than a specified maximum number of hours

Original gurobipy Code:

import gurobipy
# Create Data
EMPLOYEE, MIN, MAX, COST, START, END = gurobipy.multidict({
    "SMITH"   : [6, 8, 30, 6, 20], "JOHNSON": [6, 8, 50, 0, 24], 'WILLIAMS': [6, 8, 30, 0, 24],
    'JONES'   : [6, 8, 30, 0, 24], 'BROWN': [6, 8, 40, 0, 24], 'DAVIS': [6, 8, 50, 0, 24],
    'MILLER'  : [6, 8, 45, 6, 18], 'WILSON': [6, 8, 30, 0, 24], 'MOORE': [6, 8, 35, 0, 24],
    'TAYLOR'  : [6, 8, 40, 0, 24], 'ANDERSON': [2, 3, 60, 0, 6], 'THOMAS': [2, 4, 40, 0, 24],
    'JACKSON' : [2, 4, 60, 8, 16], 'WHITE': [2, 6, 55, 0, 24], 'HARRIS': [2, 6, 45, 0, 24],
    'MARTIN'  : [2, 3, 40, 0, 24], 'THOMPSON': [2, 5, 50, 12, 24], 'GARCIA': [2, 4, 50, 0, 24],
    'MARTINEZ': [2, 4, 40, 0, 24], 'ROBINSON': [2, 5, 50, 0, 24]})
REQUIRED = [1, 1, 2, 3, 6, 6, 7, 8, 9, 8, 8, 8, 7, 6, 6, 5, 5, 4, 4, 3, 2, 2, 2, 2]
MODEL = gurobipy.Model("Work Schedule")

# Create variable
x = MODEL.addVars(EMPLOYEE, range(24), range(1, 25), vtype=gurobipy.GRB.BINARY)

MODEL.update()

# Obj
MODEL.setObjective(gurobipy.quicksum((j - i) * x[d, i, j] * COST[d] for d in EMPLOYEE for i in range(24) for j in range(i + 1, 25)), sense=gurobipy.GRB.MINIMIZE)

# Constraints
MODEL.addConstrs(x.sum(d) <= (gurobipy.quicksum(x[d, i, j] for i in range(START[d], END[d] + 1) for j in range(i + 1, END[d] + 1) if MIN[d] <= j - i <= MAX[d])) for d in EMPLOYEE)
MODEL.addConstrs(gurobipy.quicksum(x[d, i, j] for i in range(START[d], END[d] + 1) for j in range(i + 1,END[d] + 1) if MIN[d] <= j - i <= MAX[d]) <= 1 for d in EMPLOYEE)
MODEL.addConstrs(gurobipy.quicksum(x[d, i, j] for d in EMPLOYEE for i in range(24) for j in range(i + 1, 25) if i <= c < j) >= REQUIRED[c] for c in range(24))

# Excute
MODEL.optimize()

My pulp Code:

# Create Data
# EMPLOYEE: 0)MIN, 1)MAX, 2)COST, 3)START, 4)END
md = {'SMITH':[6,8,30,6,20],'JOHNSON':[6,8,50,0,24],'WILLIAMS':[6,8,30,0,24],
    'JONES':[6,8,30,0,24],'BROWN':[6,8,40,0,24],'DAVIS':[6,8,50,0,24],
    'MILLER':[6,8,45,6,18],'WILSON':[6,8,30,0,24],'MOORE':[6,8,35,0,24],
    'TAYLOR':[6,8,40,0,24],'ANDERSON':[2,3,60,0,6],'THOMAS':[2,4,40,0,24],
    'JACKSON':[2,4,60,8,16],'WHITE':[2,6,55,0,24],'HARRIS':[2,6,45,0,24],
    'MARTIN':[2,3,40,0,24],'THOMPSON':[2,5,50,12,24],'GARCIA':[2,4,50,0,24],
    'MARTINEZ':[2,4,40,0,24],'ROBINSON':[2,5,50,0,24]}

REQUIRED = [1, 1, 2, 3, 6, 6, 7, 8, 9, 8, 8, 8, 7, 6, 6, 5, 5, 4, 4, 3, 2, 2, 2, 2]
MIN, MAX, COST, START, END = 0, 1, 2, 3, 4
t = 24

# Create Op
MODEL = pulp.LpProblem("Work Schedule", pulp.LpMinimize)

# Create variable
x = pulp.LpVariable.dicts("x", [(d, i, j) for d in md.keys() for i in range(t) for j in range(1, t+1)], cat=pulp.LpBinary)

# Create Obj
MODEL += pulp.lpSum((j - i) * x[d, i, j] * md[d][COST] for i in range(t) for j in range(i+1, t+1) for d in md.keys())

# Constraints
for c in range(len(REQUIRED)):
    MODEL += pulp.lpSum(x[d, i, j] for d in md.keys() for i in range(t) for j in range(i+1, t+1) if i <= c < j) >= REQUIRED[c]
for k, v in md.items():
    #print(k, v)
    MODEL += pulp.lpSum(x[k, i, j] for i in range(v[START], v[END] + 1) for j in range(i + 1, v[END] + 1) if v[MIN] <= (j - i) <= v[MAX]) <= 1
    MODEL += pulp.lpSum(x[k, i, j] for i in range(v[START], v[END] + 1) for j in range(i + 1, t + 1)) <= pulp.lpSum(x[k, i, j] for i in range(v[START], v[END] + 1) for j in range(i + 1, v[END] + 1) if v[MIN] <= (j - i) <= v[MAX])
MODEL.solve()

The gurobipy code result is: enter image description here

My pulp code result is: enter image description here

Obviously, my result is incorrect, but when I went through each condition individually, I couldn't find any differences. Does anyone know how to fix this? Thanks a lot, everyone.


Solution

  • I don't trust your results for either of the methods, because you've omitted ANDERSON's first shift half. (See original code's reference to cyclics and GALLERY).

    I still don't think that you should have what amounts to O(n^2) variables. It's easy enough to constrain the employee-hour selection variables to be contiguous without that extra dimension.

    import pulp
    import pandas as pd
    
    
    md = pd.DataFrame(
        columns=('EmployeeName', 'MinHours', 'MaxHours', 'HourlyWage', 'Start', 'End'),
        data=[
            (   'SMITH', 6, 8, 30,  6, 20),
            ( 'JOHNSON', 6, 8, 50,  0, 24),
            ('WILLIAMS', 6, 8, 30,  0, 24),
            (   'JONES', 6, 8, 30,  0, 24),
            (   'BROWN', 6, 8, 40,  0, 24),
            (   'DAVIS', 6, 8, 50,  0, 24),
            (  'MILLER', 6, 8, 45,  6, 18),
            (  'WILSON', 6, 8, 30,  0, 24),
            (   'MOORE', 6, 8, 35,  0, 24),
            (  'TAYLOR', 6, 8, 40,  0, 24),
            ('ANDERSON', 2, 3, 60, 18, 24 + 6),
            (  'THOMAS', 2, 4, 40,  0, 24),
            ( 'JACKSON', 2, 4, 60,  8, 16),
            (   'WHITE', 2, 6, 55,  0, 24),
            (  'HARRIS', 2, 6, 45,  0, 24),
            (  'MARTIN', 2, 3, 40,  0, 24),
            ('THOMPSON', 2, 5, 50, 12, 24),
            (  'GARCIA', 2, 4, 50,  0, 24),
            ('MARTINEZ', 2, 4, 40,  0, 24),
            ('ROBINSON', 2, 5, 50,  0, 24),
        ],
    ).set_index(keys='EmployeeName', drop=True).sort_index()
    
    # Hourly staffing requirements, over 24 hours only
    hour48 = pd.RangeIndex(name='Hour', start=0, stop=48)
    required = pd.Series(
        name='Required', index=hour48[:24],
        data=(1, 1, 2, 3, 6, 6, 7, 8, 9, 8, 8, 8, 7, 6, 6, 5, 5, 4, 4, 3, 2, 2, 2, 2),
    )
    
    # Long-style employee-hour selection variables, multi-indexed by employee and hour
    flat = pd.DataFrame(
        data=pulp.LpVariable.matrix(name='sel', indices=(md.index, hour48), cat=pulp.LpBinary),
        index=md.index, columns=hour48,
    ).stack()
    flat.name = 'Select'
    
    # For each employee and available hour, each selection variable beside the employee data
    lp_vars = pd.merge(
        left=md, right=flat, on='EmployeeName',
    ).set_index(flat.index)
    hour_idx = lp_vars.index.get_level_values('Hour')
    lp_vars = lp_vars[
        (hour_idx >= lp_vars['Start']) &
        (hour_idx < lp_vars['End'])
    ]
    
    # The expense for each employee, as affine expressions
    md['Duration'] = lp_vars['Select'].groupby('EmployeeName').agg(pulp.lpSum)
    md['Expense'] = md['HourlyWage'] * md['Duration']
    
    model = pulp.LpProblem(name='Work_Schedule', sense=pulp.LpMinimize)
    model.setObjective(pulp.lpSum(md['Expense']))
    
    for name, row in md.iterrows():
        model.addConstraint(
            name=f'hours_min_{name}',
            constraint=row['Duration'] >= row['MinHours'],
        )
        model.addConstraint(
            name=f'hours_max_{name}',
            constraint=row['Duration'] <= row['MaxHours'],
        )
    
    hour_idx = lp_vars.index.get_level_values('Hour')
    for hour, min_staff in required.items():
        hour_vars = lp_vars[hour_idx % 24 == hour]
    
        # For each hour (or the same hour in the next day), enforce minimum staff
        model.addConstraint(
            name=f'min_staff_{hour}',
            constraint=pulp.lpSum(hour_vars['Select']) >= min_staff,
        )
    
    for name, selects in lp_vars['Select'].groupby('EmployeeName'):
        selects = selects.droplevel('EmployeeName')
    
        # At the beginning and end of the day, within the minimum number of working hours, the
        # selector values are simply monotonic
        employee = md.loc[name]
        nmin = employee['MinHours']
        for s0, s1 in zip(selects[:nmin-1], selects[1: nmin]):
            model.addConstraint(s0 <= s1)
        for s0, s1 in zip(selects[-nmin: -1], selects[1-nmin:]):
            model.addConstraint(s0 >= s1)
    
        # In the middle of the day, conditionally enforce monotonicity based on selection
        M = 48
        for i in range(nmin-1, selects.size-nmin):
            model.addConstraint(
                name=f'm_{name}_{selects.index[i]}',
                constraint=M*selects.iloc[i] <=
                           M*(selects.iloc[i+1] + 1) -
                           pulp.lpSum(selects.iloc[i+2: 1-nmin]),
            )
    
    print(model)
    model.solve()
    if model.status != pulp.LpStatusOptimal:
        raise ValueError(model.status)
    
    md[['Duration', 'Expense']] = md[['Duration', 'Expense']].map(pulp.LpAffineExpression.value)
    lp_vars['Select'] = lp_vars['Select'].map(pulp.LpVariable.value)
    
    pd.options.display.width = 200
    pd.options.display.max_columns = 99
    print(md)
    
    hours_total = lp_vars['Select'].groupby('Hour').sum()
    next_day = hours_total[required.size:]
    hours_total[:next_day.size] += next_day.values
    print(pd.DataFrame({
        'required': required,
        'allocated': hours_total[:required.size],
    }))
    print(
        lp_vars['Select']
        .astype(int)
        .unstack('Hour', fill_value=0)
        .sort_index(axis=1)
    )
    
    Work_Schedule:
    MINIMIZE
    60*sel_ANDERSON_18 + 60*sel_ANDERSON_19 + ...
    SUBJECT TO
    hours_min_ANDERSON: sel_ANDERSON_18 + sel_ANDERSON_19 + sel_ANDERSON_20
     + sel_ANDERSON_21 + sel_ANDERSON_22 + sel_ANDERSON_23 + sel_ANDERSON_24
     + sel_ANDERSON_25 + sel_ANDERSON_26 + sel_ANDERSON_27 + sel_ANDERSON_28
     + sel_ANDERSON_29 >= 2
    ...
    
    VARIABLES
    0 <= sel_ANDERSON_18 <= 1 Integer
    0 <= sel_ANDERSON_19 <= 1 Integer
    0 <= sel_ANDERSON_20 <= 1 Integer
    ...
    
    Welcome to the CBC MILP Solver 
    Version: 2.10.3 
    Build Date: Dec 15 2019 
    
    At line 2 NAME          MODEL
    At line 3 ROWS
    At line 467 COLUMNS
    At line 5951 RHS
    At line 6414 BOUNDS
    At line 6833 ENDATA
    Problem MODEL has 462 rows, 418 columns and 4229 elements
    Coin0008I MODEL read with 0 errors
    Option for timeMode changed from cpu to elapsed
    Continuous objective value is 4700 - 0.01 seconds
    ...
    
    Result - Optimal solution found
    
    Objective value:                4700.00000000
    ...
    
                  MinHours  MaxHours  HourlyWage  Start  End  Duration  Expense
    EmployeeName                                                               
    ANDERSON             2         3          60     18   30       2.0    120.0
    BROWN                6         8          40      0   24       8.0    320.0
    DAVIS                6         8          50      0   24       8.0    400.0
    GARCIA               2         4          50      0   24       4.0    200.0
    HARRIS               2         6          45      0   24       6.0    270.0
    JACKSON              2         4          60      8   16       2.0    120.0
    JOHNSON              6         8          50      0   24       8.0    400.0
    JONES                6         8          30      0   24       8.0    240.0
    MARTIN               2         3          40      0   24       3.0    120.0
    MARTINEZ             2         4          40      0   24       4.0    160.0
    MILLER               6         8          45      6   18       8.0    360.0
    MOORE                6         8          35      0   24       8.0    280.0
    ROBINSON             2         5          50      0   24       3.0    150.0
    SMITH                6         8          30      6   20       8.0    240.0
    TAYLOR               6         8          40      0   24       8.0    320.0
    THOMAS               2         4          40      0   24       4.0    160.0
    THOMPSON             2         5          50     12   24       5.0    250.0
    WHITE                2         6          55      0   24       2.0    110.0
    WILLIAMS             6         8          30      0   24       8.0    240.0
    WILSON               6         8          30      0   24       8.0    240.0
          required  allocated
    Hour                     
    0            1        1.0
    1            1        1.0
    2            2        2.0
    3            3        3.0
    4            6        6.0
    5            6        6.0
    6            7        7.0
    7            8        8.0
    8            9        9.0
    9            8        8.0
    10           8        8.0
    11           8        8.0
    12           7        7.0
    13           6        6.0
    14           6        6.0
    15           5        5.0
    16           5        5.0
    17           4        4.0
    18           4        4.0
    19           3        3.0
    20           2        2.0
    21           2        2.0
    22           2        2.0
    23           2        2.0
    Hour          0   1   2   3   4   5   6   7   8   9   10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29
    EmployeeName                                                                                                                        
    ANDERSON       0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   1   0   0   0   0   0
    BROWN          0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   1   1   1   1   1   1   1   0   0   0   0   0   0
    DAVIS          0   0   0   0   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
    GARCIA         0   0   0   0   1   1   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
    HARRIS         0   0   0   0   0   0   0   0   1   1   1   1   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
    JACKSON        0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0
    JOHNSON        0   0   0   0   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
    JONES          0   0   0   0   0   0   0   0   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0
    MARTIN         0   0   1   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
    MARTINEZ       0   0   0   1   1   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
    MILLER         0   0   0   0   0   0   0   0   0   0   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0   0   0   0   0   0
    MOORE          0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0
    ROBINSON       0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   1   1   0   0   0   0   0   0   0   0   0   0   0
    SMITH          0   0   0   0   0   0   0   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
    TAYLOR         0   0   0   0   0   0   0   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
    THOMAS         0   0   0   0   0   0   1   1   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
    THOMPSON       0   0   0   0   0   0   0   0   0   0   0   0   1   1   1   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0
    WHITE          0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   1   0   0   0   0   0   0   0   0   0   0
    WILLIAMS       0   0   0   0   0   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
    WILSON         0   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0