I tried add a new layer to my model but I got the error message
TypeError: The added layer must be an instance of class Layer. Found: <class '__main__.New_Layer'>
Almost answer say that all layer should be "tf.keras" or "keras"
but I add "tf.keras.layers.Layer" to New_Layer but not work.
Before add New_Layer, this model can normal execution.
Here is my code
#InceptionResNetV2
conv_base = tf.keras.applications.InceptionResNetV2(weights=None,include_top=False , input_shape=(299,299,3))
conv_base.trainable = True
for layers in conv_base.layers[:-20]:
conv_base.trainable = False
class New_Layer(tf.keras.layers.Layer):
def __init__(self, context, **kwargs):
super(New_Layer, self).__init__(**kwargs)
self.context = context
def call(self, inputs):
feature_map = inputs
#get current file name and load new
file_name = self.context.get('file_name')
print(file_name)
new_image =
return tf.concat([feature_map, new_image], axis=-1)
model = tf.keras.Sequential()
model.add(conv_base)
model.add(tf.keras.layers.GlobalAveragePooling2D())
model.add(New_Layer)
model.add(tf.keras.layers.Dense(7,activation='softmax'))
model.summary()
model.compile(optimizer=Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy'])
Referring to the tensorflow guide:
model.add(New_Layer(context = ...))