Search code examples
pythonpytorchnlphuggingface-transformershuggingface-tokenizers

Question about data_collator throwing a key error in Hugging face


I am trying to use data_collator function in hugging face using this code:

datasets = dataset.train_test_split(test_size=0.1)
train_dataset = datasets["train"]
val_dataset = datasets["test"]

print(type(train_dataset))

def data_collator(data):
# Initialize lists to store pixel values and input ids
   pixel_values_list = []
   input_ids_list = []

# Iterate over each sample in the data
   for item in data:      
      pixel_values_list.append(torch.tensor(item["pixel_values"]))
      input_ids_list.append(torch.tensor(item["input_ids"]))


return {
    "pixel_values": torch.stack(pixel_values_list),
    "labels": torch.stack(input_ids_list)
}

the train_data has 5 keys including input_ids. However, when I print(data[0]) inside the data_collator function, I only see 1 key, which is giving an error when running the trainer:

Traceback (most recent call last):
 File "caption-code.py", line 134, in <module>
trainer.train()
  File "C:\Users\moham\anaconda3\envs\transformer\lib\site- 
 packages\transformers\trainer.py", line 1321, in train
ignore_keys_for_eval=ignore_keys_for_eval,
 File "C:\Users\moham\anaconda3\envs\transformer\lib\site- 
  packages\transformers\trainer.py", line 1528, in _inner_training_loop
  for step, inputs in enumerate(epoch_iterator):
    File "C:\Users\moham\anaconda3\envs\transformer\lib\site- 
  packages\torch\utils\data\dataloader.py", line 521, in __next__
  data = self._next_data()
 File "C:\Users\moham\anaconda3\envs\transformer\lib\site- 
  packages\torch\utils\data\dataloader.py", line 561, in _next_data
data = self._dataset_fetcher.fetch(index)  # may raise StopIteration
 File "C:\Users\moham\anaconda3\envs\transformer\lib\site- 
 packages\torch\utils\data\_utils\fetch.py", line 52, in fetch
 return self.collate_fn(data)
 File "caption-code.py", line 102, in data_collator
 input_ids_list.append(item["input_ids"])
  KeyError: 'input_ids'

I am using the trainer function as follows:

training_args = Seq2SeqTrainingArguments(
predict_with_generate=True,
evaluation_strategy="epoch",
per_device_train_batch_size=4,
per_device_eval_batch_size=4,
output_dir="C:/Users/moham/Desktop/Euler/output",
logging_dir="./logs",
logging_steps=10,
save_steps=10,
eval_steps=10,
warmup_steps=10,
max_steps=100,  # adjust as needed
overwrite_output_dir=True,
save_total_limit=3,
 )
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
data_collator=data_collator,
tokenizer=tokenizer,
compute_metrics=compute_exact_match
 )
trainer.train()

Solution

  • The actual issue is in your Seq2SeqTrainingArguments which is leading the error in your data_collator().

    Reason: The .trainer() is by default removing any unknown columns (not present in the model's forward method) from your data when you are providing a custom data_collator(). As a result even though each sample in your train_dataset has all the keys, when you send that to data_collator(), the .trainer() automatically removes the unknown columns.

    Solution: You need to include an argument in your training arguments like the following:

    training_args = Seq2SeqTrainingArguments(
    predict_with_generate=True,
    remove_unused_columns=False, 
    ...)
    

    The remove_unused_columns=False, would prevent the default behaviour and you'd get the entire data in data_collator(). This issue would be useful for further reference.