Search code examples
pythonscipy-optimizesimultaneouslog-likelihood

How to use a variable before it is defined in self-defined likelihood function


I am trying to estimate a self-defined likelihood function

import numpy as np
import pandas as pd
from scipy.optimize import minimize

def lik(params):
    p_s = params[0]
    lamda_s=params[1]
    lamda_bl=params[2]
    phi_bl=params[3]
    p_hat=params[4]

    a1_bl = 4 * df["s1"] + 1 * df["s2"] + 6 * df["s3"]
    a2_bl = 0 * df["s1"] + 2 * df["s2"] + 8 * df["s3"]
    a3_bl = 10 * df["s1"] + 4 * df["s2"] + 0 * df["s3"]

    p1_bl = np.exp(lamda_bl*(a1_bl-a2_bl))/(np.exp(lamda_bl * (a1_bl - a2_bl))+1 + np.exp(lamda_bl*(a3_bl-a2_bl)))
    p2_bl = 1 / (np.exp(lamda_bl*(a1_bl-a2_bl))+1+np.exp(lamda_bl * (a3_bl-a2_bl)))
    p3_bl = np.exp(lamda_bl*(a3_bl-a2_bl))/(np.exp(lamda_bl * (a1_bl - a2_bl))+1 + np.exp(lamda_bl*(a3_bl-a2_bl)))

    df['f_bl'] = p1_bl*y1+p2_bl*y2+p3_bl*y3

    s1_s = p1_s * p_hat + p1_bl * (1- p_hat)
    s2_s = p2_s * p_hat + p2_bl * (1 - p_hat)
    s3_s = p3_s * p_hat + p3_bl * (1 - p_hat)

    a1_s = 4 * s1_s + 1 * s2_s + 6 * s3_s
    a2_s = 0 * s1_s + 2 * s2_s + 8 * s3_s
    a3_s = 10 * s1_s + 4 * s2_s + 0 * s3_s

    p1_s = np.exp(lamda_s*(a1_s-a2_s))/(np.exp(lamda_s * (a1_s - a2_s)) + 1 + np.exp(lamda_s*(a3_s-a2_s)))
    p2_s = 1 / (np.exp(lamda_s*(a1_s-a2_s))+1+np.exp(lamda_s * (a3_s-a2_s)))
    p3_s = np.exp(lamda_s*(a3_s-a2_s))/(np.exp(lamda_s * (a1_s - a2_s))+1 + np.exp(lamda_s*(a3_s-a2_s)))

    df['f_s'] = p1_s*y1+p2_s*y2+p3_s*y3

    pcodes = df["pcode"].unique()
    ff_bl = np.array([np.prod(df['f_bl'][df['pcode'] == i]) for i in pcodes])
    ff_s = np.array([np.prod(df['f_s'][df['pcode'] == i]) for i in pcodes])

    pp = p_s * ff_s + (1-p_s)*ff_bl

    li=np.log(pp)
    LL=np.sum(li)

    return -LL

results = minimize(lik,np.array([0.6, 0.6, 0.1, 0.3,0.2]),method= 'L-BFGS-B')
print(results)

s1_s, a1_s and p1_s are interdependent, and so I got an error UnboundLocalError: local variable 'p1_s' referenced before assignment.

Is there a way to write such likelihood function without solving it myself?


Solution

  • You need to add one of the variable series in your cyclic dependency as degrees of freedom, and then add a nonlinear constraint that tells the solver to optimize while holding the equality true.

    There's a lot of code in your program that is either under-vectorised or mis-vectorised but I cannot help with most of it, because you're missing a pile of variables in your question and so I've had to fill in numerous ("bogus") gaps to make this reproducible. It's critical that you add reasonable bounds.

    from functools import partial
    
    import numpy as np
    from scipy.optimize import minimize, NonlinearConstraint, Bounds
    
    
    def unpack_params(
        params: np.ndarray,
        s1: np.ndarray, s2: np.ndarray, s3: np.ndarray,
    ) -> tuple[float, ...]:
        (
            (p_s, lamda_s, lamda_bl, phi_bl, p_hat), p1_s, p2_s, p3_s,
        ) = np.split(params, (5, 5 + len(s1), 5 + 2*len(s1)))
    
        # inefficient
        a1_bl =  4*s1 + 1*s2 + 6*s3
        a2_bl =  0*s1 + 2*s2 + 8*s3
        a3_bl = 10*s1 + 4*s2 + 0*s3
    
        # inefficient
        denb = np.exp(lamda_bl*(a1_bl - a2_bl)) + 1 + np.exp(lamda_bl*(a3_bl - a2_bl))
        p1_bl = np.exp(lamda_bl*(a1_bl - a2_bl)) / denb
        p2_bl = 1 / denb
        p3_bl = np.exp(lamda_bl*(a3_bl - a2_bl)) / denb
    
        return p_s, lamda_s, lamda_bl, phi_bl, p_hat, p1_s, p2_s, p3_s, p1_bl, p2_bl, p3_bl
    
    
    def likelihood(
        params: np.ndarray,
        s1: np.ndarray, s2: np.ndarray, s3: np.ndarray,
        y1: np.ndarray, y2: np.ndarray, y3: np.ndarray,
        pcode: np.ndarray,
    ) -> float:
        (
            p_s, lamda_s, lamda_bl, phi_bl, p_hat, p1_s, p2_s, p3_s, p1_bl, p2_bl, p3_bl,
        ) = unpack_params(params, s1, s2, s3)
    
        f_bl = p1_bl*y1 + p2_bl*y2 + p3_bl*y3
        f_s  = p1_s *y1 + p2_s *y2 + p3_s *y3
    
        # inefficient
        pcodes = np.unique(pcode)
        ff_bl = np.array([np.prod(f_bl[pcode == i]) for i in pcodes])
        ff_s  = np.array([np.prod(f_s [pcode == i]) for i in pcodes])
    
        pp = p_s*ff_s + (1 - p_s)*ff_bl
    
        li = np.log(pp)
        ll = li.sum()
        return -ll
    
    
    def constrain_ps(
        s1: np.ndarray, s2: np.ndarray, s3: np.ndarray,
        params: np.ndarray,
    ) -> np.ndarray:
        (
            p_s, lamda_s, lamda_bl, phi_bl, p_hat, p1_s, p2_s, p3_s, p1_bl, p2_bl, p3_bl,
        ) = unpack_params(params, s1, s2, s3)
    
        # inefficient
        s1_s = p1_s*p_hat + p1_bl*(1 - p_hat)
        s2_s = p2_s*p_hat + p2_bl*(1 - p_hat)
        s3_s = p3_s*p_hat + p3_bl*(1 - p_hat)
    
        # inefficient
        a1_s =  4*s1_s + 1*s2_s + 6*s3_s
        a2_s =  0*s1_s + 2*s2_s + 8*s3_s
        a3_s = 10*s1_s + 4*s2_s + 0*s3_s
    
        # inefficient
        dens = np.exp(lamda_s * (a1_s - a2_s)) + 1 + np.exp(lamda_s*(a3_s-a2_s))
        p1_sv = np.exp(lamda_s*(a1_s - a2_s))/dens
        p2_sv = 1 / dens
        p3_sv = np.exp(lamda_s*(a3_s - a2_s))/dens
    
        # inefficient
        return np.concatenate((
            p1_sv - p1_s,
            p2_sv - p2_s,
            p3_sv - p3_s,
        ))
    
    
    def solve(*args: np.ndarray) -> np.ndarray:
        s1, s2, s3, *_ = args
    
        result = minimize(
            fun=likelihood,  #             v BOGUS v
            x0=(0.6, 0.6, 0.1, 0.3, 0.2) + (0.5,)*(3*len(s1)),
            args=args,
            constraints=NonlinearConstraint(
                fun=partial(constrain_ps, s1, s2, s3),
                lb=0, ub=0,
            ),
            options={'maxiter': 1_000},
            bounds=Bounds(lb=0.1, ub=5),  # < BOGUS
        )
        assert result.success, result.message
        return result.x
    
    
    def main() -> None:
        rand = np.random.default_rng(seed=0)
        s1, s2, s3, y1, y2, y3 = rand.random(size=(6, 10))  # < BOGUS
        pcode = rand.integers(low=0, high=10, size=10)      # < BOGUS
    
        params = solve(s1, s2, s3, y1, y2, y3, pcode)
    
        (
            p_s, lamda_s, lamda_bl, phi_bl, p_hat, p1_s, p2_s, p3_s, p1_bl, p2_bl, p3_bl,
        ) = unpack_params(params, s1, s2, s3)
        print('     p_s =', p_s)
        print(' lamda_s =', lamda_s)
        print('lamda_bl =', lamda_bl)
        print('  phi_bl =', phi_bl)
        print('   p_hat =', p_hat)
        print('pjs equation errors:')
        print(constrain_ps(s1, s2, s3, params))
    
    
    if __name__ == '__main__':
        main()
    
         p_s = 2.8526260821832463
     lamda_s = 0.1937634525070506
    lamda_bl = 4.999999999999996
      phi_bl = 0.29999999999975147
       p_hat = 0.10000000000000005
    pjs equation errors:
    [-4.52609218e-08 -4.37312120e-08  7.77375703e-09  7.74417697e-09
     -4.52615372e-08 -4.52612817e-08  1.63845859e-09 -1.49695251e-09
      3.55849794e-10 -4.52621541e-08 -3.45946843e-08 -3.28769829e-08
     -1.17397136e-09 -1.14484833e-09 -3.45941857e-08 -3.45951420e-08
      1.15751003e-09 -3.98884203e-09 -8.80438666e-10 -3.45948470e-08
      7.98552173e-08  7.66103062e-08 -6.59930843e-09 -6.59914307e-09
      7.98556435e-08  7.98554262e-08 -2.79849960e-09  5.48236018e-09
      5.24669364e-10  7.98545330e-08]