I want to store a large n
-dimensional vector (e.g. an embedding vector) in SQL Server as a piece of metadata associated with another row.
In this example, it will be a 384-dimensional vector, for example:
[0.161391481757164, -0.23294533789157867, -0.5648667216300964, -0.3210797905921936, -0.03274689242243767, 0.011770576238632202, -0.06612513959407806,
-0.14662186801433563, -0.17081189155578613, 0.2879514992237091, -0.1932784765958786, 0.009713868610560894, 0.23330552875995636, 0.03551964834332466,
-0.20526213943958282, 0.06445703655481339, -0.3146169185638428, 0.5788811445236206, 0.09118294715881348, -0.0048667509108781815,-0.16503077745437622,
0.25162017345428467, -0.36395764350891113, -0.34742429852485657, 0.0526515394449234, 0.08912508934736252, 0.48464590311050415, -0.04224267974495888,
0.32445403933525085, -0.6847451329231262, -0.20959551632404327, -0.027657458558678627, 0.20439794659614563, 0.6859520077705383, -0.4988805055618286,
-0.26204171776771545, -0.18842612206935883, 0.07067661732435226, 0.02633148804306984, 0.03182782977819443, 0.28935596346855164, -0.0016041728667914867,
0.14609676599502563, -0.36272501945495605, 0.10288259387016296, -0.3651926815509796, -0.3823530375957489, 0.14052163064479828, 0.006418740376830101,
0.11741586774587631, -0.6509529948234558, -0.15997739136219025, -0.42837604880332947, 0.12351743131875992, 0.0485026054084301, 0.24820692837238312,
0.46972623467445374, -0.47954055666923523, -0.5238635540008545, -0.3543052673339844, 0.22626525163650513, 0.18406584858894348, 0.6463921070098877,
0.11894208937883377, -0.07143554836511612, 0.004256516695022583, 0.10088140517473221, 0.3335645794868469, 0.16905969381332397, 0.056856121867895126,
0.11355260014533997, 0.3708053231239319, -0.7484591603279114, 0.17503942549228668, -0.3249044418334961, 0.5901510715484619, 0.41506800055503845,
0.05852462351322174, 0.5119204521179199, 0.2750142216682434, -0.2058306783437729, 0.8199670314788818, 0.16698679327964783, -0.1572146713733673,
0.014733579009771347 ,0.0168467964977026, 0.4688740372657776, -0.07839230448007584, 0.49326324462890625, -0.29934313893318176, 0.21525822579860687,
0.1396997570991516, -0.3420834243297577, -0.5197309851646423, 0.10842061042785645, -0.0338996984064579, 0.35846689343452454, -0.1660442352294922,
0.15579357743263245, 0.015674782916903496,-0.8510578870773315, -0.07501569390296936, -0.1791406124830246, 0.14926102757453918, -0.2269722819328308,
0.42619261145591736, 0.09489753842353821, -0.13341256976127625, 0.3312526345252991, 0.22534190118312836, 0.0679713636636734, 0.17042726278305054,
0.14300595223903656, -0.06654901057481766, -0.2170567661523819, -0.454984188079834, -0.5516679286956787, -0.10752955824136734, -0.05743071809411049,
0.32108309864997864, -0.5445901155471802, -0.43162357807159424, 0.08207866549491882, 0.0664522647857666, 0.4478979706764221, 0.2190810590982437,
-0.05722910910844803, -0.0932786613702774, 0.01758035272359848, 0.16166797280311584, 0.44004616141319275, -0.21601708233356476, 0.43121641874313354,
0.32022470235824585, -0.014045504853129387,-0.24948528409004211, -0.4389941990375519, 0.3816317319869995, -0.5687862038612366, 0.1088542640209198,
-0.403241366147995, 0.08174201846122742, 0.21350793540477753, 0.2396722435951233, 0.4973253607749939, 0.31202447414398193, -0.5260801315307617,
-0.3351263403892517, -0.04100760444998741, 0.6609364151954651, -0.2047063261270523, 0.19385716319084167, -0.5661329627037048, -0.27058693766593933,
-0.1637117713689804, 0.30641692876815796, -0.08894442766904831, -0.052735116332769394,-0.13839660584926605, -0.6741533875465393, 0.05569711700081825,
-0.04354270175099373, 0.20251914858818054, 0.24813368916511536, 0.1719648838043213, 0.26782000064849854, 0.3137670159339905, 0.18599936366081238,
0.23953016102313995, 0.17769533395767212, 0.46293920278549194, -0.19122551381587982, -0.5595004558563232, 0.09755659103393555, 0.3125424385070801,
-0.5813230276107788, -1.0698442459106445, -0.09045401215553284, -0.08948248624801636, -0.051830895245075226,-0.0001317809073952958,-0.08400193601846695,
0.25725823640823364, -0.10135184973478317, 0.07884480804204941, 0.2091679722070694, 0.3950233459472656, 0.2745698094367981, -0.872776448726654,
-0.16590780019760132, 0.4308463931083679, -0.24375642836093903, -0.02120584435760975, 0.05213866010308266, -0.19898287951946259, -0.5506985187530518,
0.40167248249053955, 0.1640072464942932, -0.010167916305363178, 0.14038121700286865, 0.4958030879497528, -0.7259818315505981, -0.24387206137180328,
0.08528701961040497, 0.03415993973612785, -0.16687284409999847, 0.3804749548435211, -0.08561687171459198, -0.2752263844013214, 0.5883951783180237,
-0.3283255994319916, -0.12724250555038452, 0.08751262724399567, -0.44206979870796204, -0.11079336702823639, -0.16302113234996796, 0.11022322624921799,
-0.09404750168323517, -0.256179541349411, 0.20473307371139526, 0.41829538345336914, -0.1095203086733818, 0.02342342585325241, -0.18814104795455933,
-0.2540932893753052, 0.48397907614707947, 0.03593514859676361, -0.089835524559021, -0.6478171944618225, -0.1757517009973526, 0.0672023594379425,
0.0695127546787262, -0.6398074626922607, -0.03958022966980934, -0.10351496934890747, 0.22433893382549286, 0.6756673455238342, -0.2924160957336426,
0.17503827810287476, 0.12915058434009552, -0.239552840590477, 0.15498916804790497, -0.4730042815208435, -0.12289212644100189, -0.004052990116178989,
0.11593572050333023, -0.1965983510017395, 0.5210273265838623, -0.18184830248355865, 0.2579534947872162, -0.1920309066772461, -0.389960378408432,
0.04139290377497673, -0.11638019979000092, -0.10620912909507751, -0.5321099162101746, 0.13135096430778503, -0.07761876285076141, -0.0830138698220253,
-0.01572849042713642, 0.31080499291419983, -0.41445496678352356, 0.1609737128019333, 0.5787453651428223, -0.05459209159016609, 0.1318219006061554,
-0.06957206130027771, 0.15152350068092346, -0.07094550132751465, -0.196294367313385, 0.12644843757152557, 0.23419199883937836, 0.5845456719398499,
-0.19989481568336487, -0.19607964158058167, -0.19692276418209076, -0.08633144199848175, -0.004551170393824577, 0.09362921118736267, -0.14167727530002594,
-0.14917594194412231, 0.31781134009361267, 0.18779256939888, 0.42154577374458313, -0.20578211545944214, 0.14142100512981415, -0.5664211511611938,
0.18177354335784912, 0.14776530861854553, 0.29254236817359924, 0.17831481993198395, -0.1894354224205017, -0.2836195230484009, -0.4065170884132385,
-0.14325398206710815, 0.17800962924957275, 0.7763587832450867, 0.5497004389762878, -0.00946379080414772, -0.48568078875541687, -0.022227048873901367,
-0.005903944373130798, 0.4351034462451935, 0.05010621249675751, -0.12799566984176636, -0.06675072759389877, 0.167253315448761, -0.1653994619846344,
0.21004730463027954, 0.2765181362628937, 0.5885812640190125, -0.326379656791687, -0.007390940561890602, 0.27159956097602844, -0.043763305991888046,
-0.39229199290275574, -0.19412016868591309, 0.4250912666320801, 0.6105153560638428, -0.06168382614850998, -0.5341082811355591, -0.611929714679718,
0.08125612139701843, -0.1779184639453888, 0.5319408774375916, -0.23601730167865753, 0.22285249829292297, -0.32505497336387634, 0.2152460366487503,
0.4679816663265228, 0.048206135630607605,-0.24099768698215485, -0.30208054184913635, 0.13667792081832886, 0.3552468717098236, -0.12280546128749847,
-0.006191314198076725,-0.10851636528968811, 0.08330328017473221, -0.09545236080884933, -0.02249046228826046, 0.0003346469602547586,-0.12273653596639633,
-0.05594412609934807, 0.027804357931017876,-0.4045255482196808, -0.18987023830413818, -0.0027474926318973303,0.30244430899620056, 0.2323288917541504,
-0.2729185223579407, 0.12836921215057373, 0.27967774868011475, 0.3031359016895294, 0.41273725032806396, -0.06173351779580116, 0.33845168352127075,
0.26775869727134705, -0.2933143079280853, -0.0485006645321846, 0.11777450144290924, 0.6205862760543823, -0.07637807726860046, -0.19466432929039001,
-0.3994691073894501, 0.15689416229724884, -0.11139731854200363, -0.2333720475435257, 0.2364773154258728, 0.30898618698120117, -0.1263875812292099,
-0.231489360332489, 0.34536853432655334, 0.6001318097114563, -0.44741731882095337, 0.07382357120513916, -0.019649405032396317, -0.1029537245631218,
0.369470477104187, -0.032077688723802567,-0.13972929120063782, 0.24549521505832672, -0.13091856241226196, -0.029257331043481827]
My first thought was to store the 384 real
values in a separate table, with a key to the original row (vertical partitioning):
CREATE TABLE Embeddings (
RowGUID uniquedientifier NOT NULL PRIMARY KEY,
f1 real NOT NULL,
f2 real NOT NULL,
f3 real NOT NULL,
f4 real NOT NULL,
f5 real NOT NULL,
f6 real NOT NULL,
f7 real NOT NULL,
f8 real NOT NULL,
f9 real NOT NULL,
f10 real NOT NULL,
...snip...
f384 real NOT NULL)
RowGUID | f1 | f2 | f3 | f4 | f5 | f6 | f7 | ... | f384 |
---|---|---|---|---|---|---|---|---|---|
6ba7b814-9dad-11d1-80b4-00c04fd430c8 | 0.161391481757164 | -0.23294533789157867 | -0.5648667216300964 | -0.3210797905921936 | -0.03274689242243767 | 0.011770576238632202 | -0.06612513959407806 | ... | -0.029257331043481827 |
This...sorta...works. But it is unwieldy. Plus, my vectors today happen to be 385-dimensional; but they may soon be 1556-dimensional, which exceeds the SQL Server maximum of 1,024 columns per table.
The next idea was to pack the 4-byte (32-bit) floats into a varbinary
column:
CREATE TABLE Embeddings (
RowGUID uniquedientifier NOT NULL PRIMARY KEY,
PackedVector varbinary(1516) NOT NULL -- 384 floats * 4 bytes = 1540 bytes
)
0x0000000100000002000000030000000400000005000000060000000700000008...0000017F
\______/\______/\______/\______/\______/\______/\______/\______/ \______/
f1 f2 f3 f4 f5 f6 f7 f8 f384
And then when it comes time to read each Single
, use SUBSTRING
to rip the 4-byte float out of the varbinary, and then convert it to a real
:
DECLARE @f1 real = CAST(SUBSTRING(PackedVector, 0*4, 4) AS real);
Except two down-sides:
Downside#1: You cannot convert a binary(4)
to a real
(even though you can convert a real
to a binary(4)
; just not the other way:
May be able to workarond it with decimal
or numeric
).
Downside#2: The math of computing the euclidian distance between two vectors is conceptually valid:
DECLARE @target VARBINARY(1536) -- packed 384-dimensional vector
SELECT TOP(10) RowGUID, SUM(POWER(CAST(SUBSTRING(Embedding, i*4+1, 4) AS real) - CAST(SUBSTRING(@target, i*4 + 1, 4) AS real), 2)) as distance
FROM Embeddings
CROSS APPLY (VALUES (0), (1), (2), ..., (383)) AS sequence(i) -- Fill in the values from 0 to 383
GROUP BY RowGUID
ORDER BY distance ASC
But that will be pretty poorly performing (even if issue #1 didn't exist).
Many years ago, someone on the Microsoft newsgroups had the same question:
Can anyone point me to a reference or discuss the best way to store a vector of 120 to 480 numbers in the database? Rows seem to be out since we would quickly top the billion row mark. A table with 480 columns is too unnormalized. A single varchar(max) column? This seems the best answer for now unless there is a more efficiant way of storing it.
Thanks for any help or opinions,
And then --CELKO-- responded:
I think of a vector as a particular kind of mathematical structure and you seem to be talking about a list of some kind. Vectors have a fixed number of dimensions, etc. Here is a guess:
CREATE TABLE Vectors ( vector_id CHAR(3) NOT NULL, --whatever dim_nbr INTEGER NOT NULL, CHECK (dim_nbr BETWEEN 1 AND 480), PRIMARY KEY (vector_id, dim_nbr), dim_val INTEGER NOT NULL );
Making the values of a the vector into rows:
Embeddings
RowGUID | dimNumber | dimValue |
---|---|---|
6ba7b814-9dad-11d1-80b4-00c04fd430c8 | 1 | 0.161391481757164 |
6ba7b814-9dad-11d1-80b4-00c04fd430c8 | 2 | -0.23294533789157867 |
6ba7b814-9dad-11d1-80b4-00c04fd430c8 | 3 | -0.5648667216300964 |
6ba7b814-9dad-11d1-80b4-00c04fd430c8 | 4 | -0.3210797905921936 |
6ba7b814-9dad-11d1-80b4-00c04fd430c8 | 5 | -0.03274689242243767 |
6ba7b814-9dad-11d1-80b4-00c04fd430c8 | 6 | 0.011770576238632202 |
6ba7b814-9dad-11d1-80b4-00c04fd430c8 | 7 | -0.06612513959407806 |
... | ... | ... |
6ba7b814-9dad-11d1-80b4-00c04fd430c8 | 384 | -0.029257331043481827 |
This is probably the best approach.
Doesn't SQL Server has better support for vectors? I know there is GEOSPATIAL/GEOGRAPHY types, but i gather those only work for 2-dimensional vectors (e.g. lattuitude+logitude)? Can't they be abused to solve the problem?
And since the goal is to compute euclidian distance between two vectors, is there a data structure that does a better job of allowing math? (varchar? xml? json? varbinary? variant?)
You may also try something like explained here
There is no specific data type available to store a vector in Azure SQL database, but we can use some human ingenuity to realize that a vector is just a list of numbers. As a result, we can store a vector in a table very easily by creating a column to contain vector data. One row per vector element. We can then use a columnstore index to efficiently store and search for vectors.
So create a table to hold the vectors:
CREATE TABLE [dbo].[embeddings]
(
[article_id] [int] NOT NULL,
[vector_value_id] [int] NOT NULL,
[vector_value] [float] NOT NULL
)
And then we can use T-SQL to efficiently compute distances:
On that table we can create a column store index to efficiently store and search for vectors. Then it is just a matter of calculating the distance between vectors to find the closest. Thanks to the internal optimization of the columnstore (that uses SIMD AVX-512 instructions to speed up vector operations) the distance calculation is extremely fast.
The most common distance is the cosine similarity, which can be calculated quite easily in SQL.
SELECT
SUM(a.value * b.value) / (
SQRT(SUM(a.value * a.value)) * SQRT(SUM(b.value * b.value))
) AS cosine_similarity
FROM
vectors_values
The SQL query is calculating the cosine similarity between two vectors, represented by the columns a.value
and b.value
. Cosine similarity is defined as follows:
Where:
The important parts of the query are:
SUM(a.value * b.value)
: Calculates the dot product of vectors (A) and (B).SQRT(SUM(a.value * a.value))
: Calculates the magnitude of vector (A).SQRT(SUM(b.value * b.value))
: Calculates the magnitude of vector (B).Finally, the entire expression divides the dot product by the product of the magnitudes to find the cosine similarity, which is returned as cosine_similarity
.