I am attempting to plot the spatial correlation between two variables, SIC
and spco2
, which are stored in separate NetCDF files. However, the spco2
dataset has a different coordinate type than the ‘SIC’ dataset. Below is some brief information about both datasets:
Sea Ice data
Dimensions:
Coordinates:
Data variables:
Carbon Data:
Dimensions:
Coordinates:
Data variables:
In the following the code I transformed the coordinates of carbon data from 0:360 to -180:180 so that the format matches but I am not sure if worked:
import xarray as xr
import numpy as np
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as cfeature
from scipy.interpolate import griddata
# Load sea ice data
sea_ice_data = xr.open_dataset(path_ice)
sea_ice_sic = sea_ice_data['SIC']
# Load carbon data
carbon_data = xr.open_dataset(path_carbon)
carbon_spco2 = carbon_data['spco2']
# Convert carbon longitudes to -180 to +180 range
carbon_spco2['longitude'] = (carbon_spco2['longitude'] + 180) % 360 - 180
# Flatten latitude and longitude coordinates
carbon_coords = np.column_stack((carbon_spco2['latitude'].values.flatten(), carbon_spco2['longitude'].values.flatten()))
# Calculate spatial correlation map
correlation_map = np.empty((len(sea_ice_sic['LAT']), len(sea_ice_sic['LON'])))
for lat_idx, lat in enumerate(sea_ice_sic['LAT']):
for lon_idx, lon in enumerate(sea_ice_sic['LON']):
sic_values = sea_ice_sic.sel(LAT=lat, LON=lon, method='nearest').values
# Interpolate carbon data to sea ice grid
spco2_values = griddata(
carbon_coords,
carbon_spco2.values.flatten(),
(lat, lon),
method='nearest'
)
correlation_map[lat_idx, lon_idx] = np.corrcoef(sic_values, spco2_values)[0, 1]
# Create a Cartopy projection
projection = ccrs.PlateCarree()
# Plot the spatial correlation map using Cartopy
plt.figure(figsize=(12, 8))
ax = plt.axes(projection=projection)
ax.set_extent([-180, 180, -90, 90], crs=ccrs.PlateCarree())
ax.coastlines()
# Plot the correlation map as an image
plt.imshow(correlation_map, cmap='RdBu_r', vmin=-1, vmax=1, extent=(-180, 180, -90, 90), origin='upper', transform=ccrs.PlateCarree())
# Add a colorbar
cbar = plt.colorbar(label='Correlation Coefficient', orientation='vertical', shrink=0.7)
cbar.ax.tick_params(labelsize=10)
plt.title('Spatial Correlation between Sea Ice and Carbon')
plt.show()
However, I am ending up with the following error message:
ValueError Traceback (most recent call last)
<ipython-input-8-1d668216ff21> in <cell line: 20>()
18
19 # Flatten latitude and longitude coordinates
---> 20 carbon_coords = np.column_stack((carbon_spco2['latitude'].values.flatten(), carbon_spco2['longitude'].values.flatten()))
21
22 # Calculate spatial correlation map
2 frames
/usr/local/lib/python3.10/dist-packages/numpy/core/overrides.py in column_stack(*args, **kwargs)
/usr/local/lib/python3.10/dist-packages/numpy/lib/shape_base.py in column_stack(tup)
654 arr = array(arr, copy=False, subok=True, ndmin=2).T
655 arrays.append(arr)
--> 656 return _nx.concatenate(arrays, 1)
657
658
/usr/local/lib/python3.10/dist-packages/numpy/core/overrides.py in concatenate(*args, **kwargs)
ValueError: all the input array dimensions for the concatenation axis must match exactly, but along dimension 0, the array at index 0 has size 173 and the array at index 1 has size 360
I am assuming the regridding did not work properly. I would appreciate any help or suggestions, regarding this. I am also attaching the Google Drive links to my dataset below:
Thank you so much for considering to take a look at my issue.
I can propose solution like this, although the loops make it very slow and at the moment do not check that time-moments are really the same (I just assume that time values are equal i.e. values correspond correctly in time):
#!/usr/bin/env ipython
# --------------------
import xarray as xr
import numpy as np
# --------------------
filein_a = 'extracted_sea_ice.nc'
filein_b = 'Carbon-rep-monthly_1985-2021.nc'
# ------------------------------------------
def nc_varget(fin,vin):
with xr.open_dataset(fin) as ncin:
return ncin.variables[vin].values
# ------------------------------------------
xa = nc_varget(filein_a,'LON')
ya = nc_varget(filein_a,'LAT')
# -----------------------------------------------------------
# ===========================================================
corrmat = np.zeros((np.size(ya),np.size(xa)))
# -------------------------------------------
dfin_a = xr.open_dataset(filein_a)
dfin_b = xr.open_dataset(filein_b)
for ix,xval in enumerate(xa):
for iy,yval in enumerate(ya):
corrmat[iy,ix] = 0.e0
serie_a = dfin_a.sel(LON=xval,LAT=yval,method='nearest')
serie_b = dfin_b.sel(longitude=xval,latitude=yval,method='nearest')
# ---------------------------------------------------
serie_a = serie_a['SIC']
serie_b = serie_b['spco2']
# ---------------------------------------------------
if np.nanstd(serie_a) == 0.e0 or np.isnan(np.nanstd(serie_a))==1: continue
if np.nanstd(serie_b) == 0.e0 or np.isnan(np.nanstd(serie_b))==1: continue
# ---------------------------------------------------
corrmat[iy,ix] = np.nanmin(np.corrcoef(serie_a,serie_b))
# ===================================================================================
ds = xr.Dataset(data_vars=dict(corrmat=(["lat", "lon"], corrmat)),coords=dict(lon=(["lon"], xa),lat=(["lat"], ya)),attrs=dict(description="Spatial correlation"))
ds.to_netcdf('test_output.nc')