I have a large data frame with many columns. I am trying to write a for loop that will do a couple of simple calculations between columns, but the columns must be specific, and I am identifying them based on location in the data frame. For example, I want to do the calculation between Column 8 and Column 1, between Column 8 and Column 7, etc.
What is the best way to create a list of the operations to be done, and call upon that list in a for loop?
I have this so far (just doing the operation manually, repeating a lot of code):
import numpy as np
import pandas as pd
data = [[99,3,12,4,63,55,67,32,15,102,87,34,82,102,99,30,99,1]]
cols_m = pd.MultiIndex.from_product([['1. FY21','2. FY22','3. FY23','4. FY24','5. FY25','6. FY26','7. FY27','8. FY28','9. FY29'],['Values','Sites']])
df = pd.DataFrame(data, columns = cols_m)
cols = df.columns.get_level_values(0).unique()
first_col = df.xs(cols[1], level=0, axis=1)
second_col = df.xs(cols[8], level=0, axis=1)
d = second_col - first_col
e = (second_col/first_col - 1) * 100
d = pd.concat({f"{cols[8]}-{cols[1]}": d}, axis=1)
e = pd.concat({f"{cols[8]}-{cols[1]} %Change": e}, axis=1)
df = pd.concat([df, d, e], axis=1)
del first_col, second_col, d, e
first_col = df.xs(cols[7], level=0, axis=1)
second_col = df.xs(cols[8], level=0, axis=1)
d = second_col - first_col
e = (second_col/first_col - 1) * 100
d = pd.concat({f"{cols[8]}-{cols[7]}": d}, axis=1)
e = pd.concat({f"{cols[8]}-{cols[7]} %Change": e}, axis=1)
df = pd.concat([df, d, e], axis=1)
and on and on, with different columns inserted...
I would ideally like to have something like below (same output), but I am not sure how to create the list:
list = {col[8] - col[1], col[8] - col[7]} #etc. etc.
all_dfs = []
for i, j in list:
first_col = df.xs(cols[i], level=0, axis=1)
second_col = df.xs(cols[j], level=0, axis=1)
d = second_col - first_col
e = (second_col/first_col - 1) * 100
d = pd.concat({f"{cols[j]}-{cols[i]}": d}, axis=1)
e = pd.concat({f"{cols[j]}-{cols[i]} %Change": e}, axis=1)
df = pd.concat([df, d, e], axis=1)
You can use a list of tuples:
pairs = [(8, 1), (8, 7)]
l = [df]
for i, j in pairs:
first_col = df.xs(cols[j], level=0, axis=1)
second_col = df.xs(cols[i], level=0, axis=1)
d = second_col - first_col
e = (second_col/first_col - 1) * 100
l.append(pd.concat({f"{cols[i]}-{cols[j]}": d,
f"{cols[i]}-{cols[j]} %Change": e},
axis=1)
)
out = pd.concat(l, axis=1)
Output:
1. FY21 2. FY22 3. FY23 4. FY24 5. FY25 6. FY26 7. FY27 8. FY28 9. FY29 9. FY29-2. FY22 9. FY29-2. FY22 %Change 9. FY29-2. FY22 9. FY29-2. FY22 %Change 9. FY29-8. FY28 9. FY29-8. FY28 %Change
Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites Values Sites
0 99 3 12 4 63 55 67 32 15 102 87 34 82 102 99 30 99 1 87 -3 725.0 -75.0 87 -3 725.0 -75.0 0 -29 0.0 -96.666667