I am building a Keras deep learning Algorithm on dogs vs cats dataset. I am able to run my code in colab. But in Jupyter lab I am getting this error.
The following argument(s) are not supported with the native Keras format: ['options']
Below is the code:
import os
import shutil
import pathlib
original_dir = pathlib.Path("/content/drive/MyDrive/Reva/dogs_vs_cats/train/train")
new_base_dir = pathlib.Path("/content/drive/MyDrive/Reva/dogs_vs_cats/")
def make_subset(subset_name, start_index, end_index):
for category in ("cat", "dog"):
dir = new_base_dir / subset_name / category
# Check if the folder exists and delete it if it does
if os.path.exists(dir):
shutil.rmtree(dir)
# Create the folder again
os.makedirs(dir)
fnames = [f"{category}.{i}.jpg" for i in range(start_index, end_index)]
for fname in fnames:
shutil.copyfile(src=original_dir / fname,
dst=dir / fname)
make_subset("train", start_index=0, end_index=1000)
make_subset("validation", start_index=1000, end_index=1500)
make_subset("test", start_index=1500, end_index=2500)
from tensorflow.keras.utils import image_dataset_from_directory
train_dataset = image_dataset_from_directory(
new_base_dir / "train",
image_size=(180, 180),
batch_size=32)
validation_dataset = image_dataset_from_directory(
new_base_dir / "validation",
image_size=(180, 180),
batch_size=32)
test_dataset = image_dataset_from_directory(
new_base_dir / "test",
image_size=(180, 180),
batch_size=32)
from tensorflow import keras
from tensorflow.keras import layers
inputs = keras.Input(shape=(180, 180, 3))
x = layers.Rescaling(1./255)(inputs)
x = layers.Conv2D(filters=32, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=64, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=128, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=256, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=256, kernel_size=3, activation="relu")(x)
x = layers.Flatten()(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs=inputs, outputs=outputs)
model.compile(loss="binary_crossentropy",
optimizer="rmsprop",
metrics=["accuracy"])
callbacks = [
keras.callbacks.ModelCheckpoint(
filepath="convnet_from_scratch.keras",
save_best_only=True,
monitor="val_loss")
]
history = model.fit(
train_dataset,
epochs=30,
validation_data=validation_dataset,
callbacks=callbacks)
I need to know how to resolve the above code. Any suggestions to improve the time required to run the code is also welcome.
As I mentioned in the comments, there seems to be a weird behaviour related to keras saving and also versioning of TF/Keras. I could replicate your error when running TF/Keras with version 2.13 (newest right now) on colab. Standard install on colab is 2.12, where the error doesn't come up.
So one solution would be to downgrade TF/Keras to 2.12.x, or change
keras.callbacks.ModelCheckpoint(
filepath="convnet_from_scratch.keras",
..)
to
keras.callbacks.ModelCheckpoint(
filepath="convnet_from_scratch.x",
..)
where x stands for whatever you fancy (NOT "keras") to not save in the .keras
format.